Search results

1 – 10 of 379
Article
Publication date: 29 March 2024

Pratheek Suresh and Balaji Chakravarthy

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a…

Abstract

Purpose

As data centres grow in size and complexity, traditional air-cooling methods are becoming less effective and more expensive. Immersion cooling, where servers are submerged in a dielectric fluid, has emerged as a promising alternative. Ensuring reliable operations in data centre applications requires the development of an effective control framework for immersion cooling systems, which necessitates the prediction of server temperature. While deep learning-based temperature prediction models have shown effectiveness, further enhancement is needed to improve their prediction accuracy. This study aims to develop a temperature prediction model using Long Short-Term Memory (LSTM) Networks based on recursive encoder-decoder architecture.

Design/methodology/approach

This paper explores the use of deep learning algorithms to predict the temperature of a heater in a two-phase immersion-cooled system using NOVEC 7100. The performance of recursive-long short-term memory-encoder-decoder (R-LSTM-ED), recursive-convolutional neural network-LSTM (R-CNN-LSTM) and R-LSTM approaches are compared using mean absolute error, root mean square error, mean absolute percentage error and coefficient of determination (R2) as performance metrics. The impact of window size, sampling period and noise within training data on the performance of the model is investigated.

Findings

The R-LSTM-ED consistently outperforms the R-LSTM model by 6%, 15.8% and 12.5%, and R-CNN-LSTM model by 4%, 11% and 12.3% in all forecast ranges of 10, 30 and 60 s, respectively, averaged across all the workloads considered in the study. The optimum sampling period based on the study is found to be 2 s and the window size to be 60 s. The performance of the model deteriorates significantly as the noise level reaches 10%.

Research limitations/implications

The proposed models are currently trained on data collected from an experimental setup simulating data centre loads. Future research should seek to extend the applicability of the models by incorporating time series data from immersion-cooled servers.

Originality/value

The proposed multivariate-recursive-prediction models are trained and tested by using real Data Centre workload traces applied to the immersion-cooled system developed in the laboratory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 March 2022

Elavaar Kuzhali S. and Pushpa M.K.

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150…

Abstract

Purpose

COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The main purpose of this work is, COVID-19 has occurred in more than 150 countries and causes a huge impact on the health of many people. The COVID-19 diagnosis is required to detect at the beginning stage and special attention should be given to them. The fastest way to detect the COVID-19 infected patients is detecting through radiology and radiography images. The few early studies describe the particular abnormalities of the infected patients in the chest radiograms. Even though some of the challenges occur in concluding the viral infection traces in X-ray images, the convolutional neural network (CNN) can determine the patterns of data between the normal and infected X-rays that increase the detection rate. Therefore, the researchers are focusing on developing a deep learning-based detection model.

Design/methodology/approach

The main intention of this proposal is to develop the enhanced lung segmentation and classification of diagnosing the COVID-19. The main processes of the proposed model are image pre-processing, lung segmentation and deep classification. Initially, the image enhancement is performed by contrast enhancement and filtering approaches. Once the image is pre-processed, the optimal lung segmentation is done by the adaptive fuzzy-based region growing (AFRG) technique, in which the constant function for fusion is optimized by the modified deer hunting optimization algorithm (M-DHOA). Further, a well-performing deep learning algorithm termed adaptive CNN (A-CNN) is adopted for performing the classification, in which the hidden neurons are tuned by the proposed DHOA to enhance the detection accuracy. The simulation results illustrate that the proposed model has more possibilities to increase the COVID-19 testing methods on the publicly available data sets.

Findings

From the experimental analysis, the accuracy of the proposed M-DHOA–CNN was 5.84%, 5.23%, 6.25% and 8.33% superior to recurrent neural network, neural networks, support vector machine and K-nearest neighbor, respectively. Thus, the segmentation and classification performance of the developed COVID-19 diagnosis by AFRG and A-CNN has outperformed the existing techniques.

Originality/value

This paper adopts the latest optimization algorithm called M-DHOA to improve the performance of lung segmentation and classification in COVID-19 diagnosis using adaptive K-means with region growing fusion and A-CNN. To the best of the authors’ knowledge, this is the first work that uses M-DHOA for improved segmentation and classification steps for increasing the convergence rate of diagnosis.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 April 2024

Tao Pang, Wenwen Xiao, Yilin Liu, Tao Wang, Jie Liu and Mingke Gao

This paper aims to study the agent learning from expert demonstration data while incorporating reinforcement learning (RL), which enables the agent to break through the…

Abstract

Purpose

This paper aims to study the agent learning from expert demonstration data while incorporating reinforcement learning (RL), which enables the agent to break through the limitations of expert demonstration data and reduces the dimensionality of the agent’s exploration space to speed up the training convergence rate.

Design/methodology/approach

Firstly, the decay weight function is set in the objective function of the agent’s training to combine both types of methods, and both RL and imitation learning (IL) are considered to guide the agent's behavior when updating the policy. Second, this study designs a coupling utilization method between the demonstration trajectory and the training experience, so that samples from both aspects can be combined during the agent’s learning process, and the utilization rate of the data and the agent’s learning speed can be improved.

Findings

The method is superior to other algorithms in terms of convergence speed and decision stability, avoiding training from scratch for reward values, and breaking through the restrictions brought by demonstration data.

Originality/value

The agent can adapt to dynamic scenes through exploration and trial-and-error mechanisms based on the experience of demonstrating trajectories. The demonstration data set used in IL and the experience samples obtained in the process of RL are coupled and used to improve the data utilization efficiency and the generalization ability of the agent.

Details

International Journal of Web Information Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 9 April 2024

Pia Borlund, Nils Pharo and Ying-Hsang Liu

The PICCH research project contributes to opening a dialogue between cultural heritage archives and users. Hence, the users are identified and their information needs, the search…

Abstract

Purpose

The PICCH research project contributes to opening a dialogue between cultural heritage archives and users. Hence, the users are identified and their information needs, the search strategies they apply and the search challenges they experience are uncovered.

Design/methodology/approach

A combination of questionnaires and interviews is used for collection of data. Questionnaire data were collected from users of three different audiovisual archives. Semi-structured interviews were conducted with two user groups: (1) scholars searching information for research projects and (2) archivists who perform their own scholarly work and search information on behalf of others.

Findings

The questionnaire results show that the archive users mainly have an academic background. Hence, scholars and archivists constitute the target group for in-depth interviews. The interviews reveal that their information needs are multi-faceted and match the information need typology by Ingwersen. The scholars mainly apply collection-specific search strategies but have in common primarily doing keyword searching, which they typically plan in advance. The archivists do less planning owing to their knowledge of the collections. All interviewees demonstrate domain knowledge, archival intelligence and artefactual literacy in their use and mastering of the archives. The search challenges they experience can be characterised as search system complexity challenges, material challenges and metadata challenges.

Originality/value

The paper provides a rare insight into the complexity of the search situation of cultural heritage archives, and the users’ multi-facetted information needs and hence contributes to the dialogue between the archives and the users.

Details

Journal of Documentation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0022-0418

Keywords

Open Access
Article
Publication date: 3 January 2024

K. Peren Arin, Alessandro De Iudicibus, Nagham Sayour and Nicola Spagnolo

This study tests whether environmental awareness affects firm creation by using Google Trends data and a novel region-level data set from Italy.

Abstract

Purpose

This study tests whether environmental awareness affects firm creation by using Google Trends data and a novel region-level data set from Italy.

Design/methodology/approach

Forward-looking entrepreneurs drive firm creation. The authors hypothesize that more environmentally conscious entrepreneurs will emerge as environmental awareness rises, increasing the number of green and energy firms. The authors test the prediction using Google Trends data and a novel region-level data set from Italy.

Findings

The authors find that not only the number of green and energy-innovative firms but also that of all innovative start-ups increases with rising environmental consciousness. The results imply some “innovation spillover” effects from green sectors to other industries with rising environmental awareness.

Originality/value

The paper hypothesizes that as environmental awareness rises, more environmental-conscious entrepreneurs will emerge, which would increase the number of green and energy firms. Robustness and falsification tests are also offered.

Details

Journal of Economic Studies, vol. 51 no. 9
Type: Research Article
ISSN: 0144-3585

Keywords

Article
Publication date: 2 January 2024

Wenlong Cheng and Wenjun Meng

This study aims to solve the problem of job scheduling and multi automated guided vehicle (AGV) cooperation in intelligent manufacturing workshops.

Abstract

Purpose

This study aims to solve the problem of job scheduling and multi automated guided vehicle (AGV) cooperation in intelligent manufacturing workshops.

Design/methodology/approach

In this study, an algorithm for job scheduling and cooperative work of multiple AGVs is designed. In the first part, with the goal of minimizing the total processing time and the total power consumption, the niche multi-objective evolutionary algorithm is used to determine the processing task arrangement on different machines. In the second part, AGV is called to transport workpieces, and an improved ant colony algorithm is used to generate the initial path of AGV. In the third part, to avoid path conflicts between running AGVs, the authors propose a simple priority-based waiting strategy to avoid collisions.

Findings

The experiment shows that the solution can effectively deal with job scheduling and multiple AGV operation problems in the workshop.

Originality/value

In this paper, a collaborative work algorithm is proposed, which combines the job scheduling and AGV running problem to make the research results adapt to the real job environment in the workshop.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 23 April 2024

Fatemeh Ravandi, Azar Fathi Heli Abadi, Ali Heidari, Mohammad Khalilzadeh and Dragan Pamucar

Untimely responses to emergency situations in urban areas contribute to a rising mortality rate and impact society's primary capital. The efficient dispatch and relocation of…

Abstract

Purpose

Untimely responses to emergency situations in urban areas contribute to a rising mortality rate and impact society's primary capital. The efficient dispatch and relocation of ambulances pose operational and momentary challenges, necessitating an optimal policy based on the system's real-time status. While previous studies have addressed these concerns, limited attention has been given to the optimal allocation of technicians to respond to emergency situation and minimize overall system costs.

Design/methodology/approach

In this paper, a bi-objective mathematical model is proposed to maximize system coverage and enable flexible movement across bases for location, dispatch and relocation of ambulances. Ambulances relocation involves two key decisions: (1) allocating ambulances to bases after completing services and (2) deciding to change the current ambulance location among existing bases to potentially improve response times to future emergencies. The model also considers the varying capabilities of technicians for proper allocation in emergency situations.

Findings

The Augmented Epsilon-Constrained (AEC) method is employed to solve the proposed model for small-sized problem. Due to the NP-Hardness of the model, the NSGA-II and MOPSO metaheuristic algorithms are utilized to obtain efficient solutions for large-sized problems. The findings demonstrate the superiority of the MOPSO algorithm.

Practical implications

This study can be useful for emergency medical centers and healthcare companies in providing more effective responses to emergency situations by sending technicians and ambulances.

Originality/value

In this study, a two-objective mathematical model is developed for ambulance location and dispatch and solved by using the AEC method as well as the NSGA-II and MOPSO metaheuristic algorithms. The mathematical model encompasses three primary types of decision-making: (1) Allocating ambulances to bases after completing their service, (2) deciding to relocate the current ambulance among existing bases to potentially enhance response times to future emergencies and (3) considering the diverse abilities of technicians for accurate allocation to emergency situations.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 November 2023

Juan Yang, Zhenkun Li and Xu Du

Although numerous signal modalities are available for emotion recognition, audio and visual modalities are the most common and predominant forms for human beings to express their…

Abstract

Purpose

Although numerous signal modalities are available for emotion recognition, audio and visual modalities are the most common and predominant forms for human beings to express their emotional states in daily communication. Therefore, how to achieve automatic and accurate audiovisual emotion recognition is significantly important for developing engaging and empathetic human–computer interaction environment. However, two major challenges exist in the field of audiovisual emotion recognition: (1) how to effectively capture representations of each single modality and eliminate redundant features and (2) how to efficiently integrate information from these two modalities to generate discriminative representations.

Design/methodology/approach

A novel key-frame extraction-based attention fusion network (KE-AFN) is proposed for audiovisual emotion recognition. KE-AFN attempts to integrate key-frame extraction with multimodal interaction and fusion to enhance audiovisual representations and reduce redundant computation, filling the research gaps of existing approaches. Specifically, the local maximum–based content analysis is designed to extract key-frames from videos for the purpose of eliminating data redundancy. Two modules, including “Multi-head Attention-based Intra-modality Interaction Module” and “Multi-head Attention-based Cross-modality Interaction Module”, are proposed to mine and capture intra- and cross-modality interactions for further reducing data redundancy and producing more powerful multimodal representations.

Findings

Extensive experiments on two benchmark datasets (i.e. RAVDESS and CMU-MOSEI) demonstrate the effectiveness and rationality of KE-AFN. Specifically, (1) KE-AFN is superior to state-of-the-art baselines for audiovisual emotion recognition. (2) Exploring the supplementary and complementary information of different modalities can provide more emotional clues for better emotion recognition. (3) The proposed key-frame extraction strategy can enhance the performance by more than 2.79 per cent on accuracy. (4) Both exploring intra- and cross-modality interactions and employing attention-based audiovisual fusion can lead to better prediction performance.

Originality/value

The proposed KE-AFN can support the development of engaging and empathetic human–computer interaction environment.

Article
Publication date: 17 February 2022

Prajakta Thakare and Ravi Sankar V.

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating…

Abstract

Purpose

Agriculture is the backbone of a country, contributing more than half of the sector of economy throughout the world. The need for precision agriculture is essential in evaluating the conditions of the crops with the aim of determining the proper selection of pesticides. The conventional method of pest detection fails to be stable and provides limited accuracy in the prediction. This paper aims to propose an automatic pest detection module for the accurate detection of pests using the hybrid optimization controlled deep learning model.

Design/methodology/approach

The paper proposes an advanced pest detection strategy based on deep learning strategy through wireless sensor network (WSN) in the agricultural fields. Initially, the WSN consisting of number of nodes and a sink are clustered as number of clusters. Each cluster comprises a cluster head (CH) and a number of nodes, where the CH involves in the transfer of data to the sink node of the WSN and the CH is selected using the fractional ant bee colony optimization (FABC) algorithm. The routing process is executed using the protruder optimization algorithm that helps in the transfer of image data to the sink node through the optimal CH. The sink node acts as the data aggregator and the collection of image data thus obtained acts as the input database to be processed to find the type of pest in the agricultural field. The image data is pre-processed to remove the artifacts present in the image and the pre-processed image is then subjected to feature extraction process, through which the significant local directional pattern, local binary pattern, local optimal-oriented pattern (LOOP) and local ternary pattern (LTP) features are extracted. The extracted features are then fed to the deep-convolutional neural network (CNN) in such a way to detect the type of pests in the agricultural field. The weights of the deep-CNN are tuned optimally using the proposed MFGHO optimization algorithm that is developed with the combined characteristics of navigating search agents and the swarming search agents.

Findings

The analysis using insect identification from habitus image Database based on the performance metrics, such as accuracy, specificity and sensitivity, reveals the effectiveness of the proposed MFGHO-based deep-CNN in detecting the pests in crops. The analysis proves that the proposed classifier using the FABC+protruder optimization-based data aggregation strategy obtains an accuracy of 94.3482%, sensitivity of 93.3247% and the specificity of 94.5263%, which is high as compared to the existing methods.

Originality/value

The proposed MFGHO optimization-based deep-CNN is used for the detection of pest in the crop fields to ensure the better selection of proper cost-effective pesticides for the crop fields in such a way to increase the production. The proposed MFGHO algorithm is developed with the integrated characteristic features of navigating search agents and the swarming search agents in such a way to facilitate the optimal tuning of the hyperparameters in the deep-CNN classifier for the detection of pests in the crop fields.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 9 April 2024

Lu Wang, Jiahao Zheng, Jianrong Yao and Yuangao Chen

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although…

Abstract

Purpose

With the rapid growth of the domestic lending industry, assessing whether the borrower of each loan is at risk of default is a pressing issue for financial institutions. Although there are some models that can handle such problems well, there are still some shortcomings in some aspects. The purpose of this paper is to improve the accuracy of credit assessment models.

Design/methodology/approach

In this paper, three different stages are used to improve the classification performance of LSTM, so that financial institutions can more accurately identify borrowers at risk of default. The first approach is to use the K-Means-SMOTE algorithm to eliminate the imbalance within the class. In the second step, ResNet is used for feature extraction, and then two-layer LSTM is used for learning to strengthen the ability of neural networks to mine and utilize deep information. Finally, the model performance is improved by using the IDWPSO algorithm for optimization when debugging the neural network.

Findings

On two unbalanced datasets (category ratios of 700:1 and 3:1 respectively), the multi-stage improved model was compared with ten other models using accuracy, precision, specificity, recall, G-measure, F-measure and the nonparametric Wilcoxon test. It was demonstrated that the multi-stage improved model showed a more significant advantage in evaluating the imbalanced credit dataset.

Originality/value

In this paper, the parameters of the ResNet-LSTM hybrid neural network, which can fully mine and utilize the deep information, are tuned by an innovative intelligent optimization algorithm to strengthen the classification performance of the model.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 379