Search results

1 – 5 of 5
Article
Publication date: 14 September 2023

Ruifeng Li and Wei Wu

In corridor environments, human-following robot encounter difficulties when the target turning around at the corridor intersections, as walls may cause complete occlusion. This…

102

Abstract

Purpose

In corridor environments, human-following robot encounter difficulties when the target turning around at the corridor intersections, as walls may cause complete occlusion. This paper aims to propose a collision-free following system for robot to track humans in corridors without a prior map.

Design/methodology/approach

In addition to following a target and avoiding collisions robustly, the proposed system calculates the positions of walls in the environment in real-time. This allows the system to maintain a stable tracking of the target even if it is obscured after turning. The proposed solution is integrated into a four-wheeled differential drive mobile robot to follow a target in a corridor environment in real-world.

Findings

The experimental results demonstrate that the robot equipped with the proposed system is capable of avoiding obstacles and following a human target robustly in the corridors. Moreover, the robot achieves a 90% success rate in maintaining a stable tracking of the target after the target turns around a corner with high speed.

Originality/value

This paper proposes a human target following system incorporating three novel features: a path planning method based on wall positions is introduced to ensure stable tracking of the target even when it is obscured due to target turns; improvements are made to the random sample consensus (RANSAC) algorithm, enhancing its accuracy in calculating wall positions. The system is integrated into a four-wheeled differential drive mobile robot effectively demonstrates its remarkable robustness and real-time performance.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 March 2024

Jianjun Yao and Yingzhao Li

Weak repeatability is observed in handcrafted keypoints, leading to tracking failures in visual simultaneous localization and mapping (SLAM) systems under challenging scenarios…

Abstract

Purpose

Weak repeatability is observed in handcrafted keypoints, leading to tracking failures in visual simultaneous localization and mapping (SLAM) systems under challenging scenarios such as illumination change, rapid rotation and large angle of view variation. In contrast, learning-based keypoints exhibit higher repetition but entail considerable computational costs. This paper proposes an innovative algorithm for keypoint extraction, aiming to strike an equilibrium between precision and efficiency. This paper aims to attain accurate, robust and versatile visual localization in scenes of formidable complexity.

Design/methodology/approach

SiLK-SLAM initially refines the cutting-edge learning-based extractor, SiLK, and introduces an innovative postprocessing algorithm for keypoint homogenization and operational efficiency. Furthermore, SiLK-SLAM devises a reliable relocalization strategy called PCPnP, leveraging progressive and consistent sampling, thereby bolstering its robustness.

Findings

Empirical evaluations conducted on TUM, KITTI and EuRoC data sets substantiate SiLK-SLAM’s superior localization accuracy compared to ORB-SLAM3 and other methods. Compared to ORB-SLAM3, SiLK-SLAM demonstrates an enhancement in localization accuracy even by 70.99%, 87.20% and 85.27% across the three data sets. The relocalization experiments demonstrate SiLK-SLAM’s capability in producing precise and repeatable keypoints, showcasing its robustness in challenging environments.

Originality/value

The SiLK-SLAM achieves exceedingly elevated localization accuracy and resilience in formidable scenarios, holding paramount importance in enhancing the autonomy of robots navigating intricate environments. Code is available at https://github.com/Pepper-FlavoredChewingGum/SiLK-SLAM.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM…

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 August 2022

Zhao Xu, Yangze Liang, Hongyu Lu, Wenshuo Kong and Gang Wu

Construction schedule delays and quality problems caused by construction errors are common in the field of prefabricated buildings. The effective monitoring of the construction…

Abstract

Purpose

Construction schedule delays and quality problems caused by construction errors are common in the field of prefabricated buildings. The effective monitoring of the construction project process is one of the key factors for the success of a project. How to effectively monitor the construction process of prefabricated building construction projects is an urgent problem to be solved. Aiming at the problems existing in the monitoring of the construction process of prefabricated buildings, this paper proposes a monitoring method based on the feature extraction of point cloud model.

Design/methodology/approach

This paper uses Trimble X7 3D laser scanner to complete field data collection experiments. The point cloud data are preprocessed, and the prefabricated component segmentation and geometric feature measurement are completed based on the PCL platform. Aiming at the problem of noisy points and large amount of data in the original point cloud data, the preprocessing is completed through the steps of constructing topological relations, thinning, and denoising. According to the spatial position relationship and geometric characteristics of prefabricated frame structure, the segmentation algorithm flow is designed in this paper. By processing the point cloud data of single column and beam members, the quality of precast column and beam members is measured. The as-built model and as-designed model are compared to realize the visual monitoring of construction progress.

Findings

The experimental results show that the dimensional measurement accuracy of beam and column proposed in this paper is more than 95%. This method can effectively detect the quality of prefabricated components. In the aspect of progress monitoring, the visualization of real-time progress monitoring is realized.

Originality/value

This paper proposed a new monitoring method based on feature extraction of the point cloud model, combined with three-dimensional laser scanning technology. This method allows for accurate monitoring of the construction process, rapid detection of construction information, and timely detection of construction quality errors and progress delays. The treatment process based on point cloud data has strong applicability, and the real-time point cloud data transfer treatment can guarantee the timeliness of monitoring.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 January 2024

Qiaojun Zhou, Ruilong Gao, Zenghong Ma, Gonghao Cao and Jianneng Chen

The purpose of this article is to solve the issue that apple-picking robots are easily interfered by branches or other apples near the target apple in an unstructured environment…

Abstract

Purpose

The purpose of this article is to solve the issue that apple-picking robots are easily interfered by branches or other apples near the target apple in an unstructured environment, leading to grasping failure and apple damage.

Design/methodology/approach

This study introduces the system units of the apple-picking robot prototype, proposes a method to determine the apple-picking direction via 3D point cloud data and optimizes the path planning method according to the calculated picking direction.

Findings

After the field experiments, the average deviation of the calculated picking direction from the desired angle was 11.81°, the apple picking success rate was 82% and the picking cycle was 11.1 s.

Originality/value

This paper describes a picking control method for an apple-picking robot that can improve the success and reliability of picking in an unstructured environment and provides a basis for automated and mechanized picking in the future.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 5 of 5