Search results

1 – 10 of 167
Open Access
Article
Publication date: 13 February 2024

Seungjae Shin

The purpose of this study is to compare the competition and productivity of the US freight rail transportation industry for the past 41 years (1980 ∼ 2020), which consists of the…

224

Abstract

Purpose

The purpose of this study is to compare the competition and productivity of the US freight rail transportation industry for the past 41 years (1980 ∼ 2020), which consists of the two periods, before and after the abolishment of the Interstate Commerce Commission (ICC) in 1995.

Design/methodology/approach

This study investigates any relationships between the market concentration index values and labor productivity values in the separate two periods, and how the existence of a regulatory body in the freight transportation market impacted the productivity of the freight rail transportation industry by using a Cobb–Douglas production function on annual financial statement data from the US stock exchange market.

Findings

This study found that, after the abolishment of the ICC: (1) the rail industry became less competitive, (2) even if the rail industry had an increasing labor productivity trend, there was a strong negative correlation between the market concentration index and labor productivity and (3) the rail industry’s total factor productivity was decreased.

Originality/value

This study is to find empirical evidence of the effect of the ICC abolishment on the competition and productivity levels in the US freight rail transportation industry using a continuous data set of 41-year financial statements, which is unique compared to previous studies.

Details

Journal of International Logistics and Trade, vol. 22 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 31 January 2024

Joonho Na, Qia Wang and Chaehwan Lim

The purpose of this study is to analyze the environmental efficiency level and trend of the transportation sector in the upper–mid–downstream of the Yangtze River Economic Belt…

Abstract

Purpose

The purpose of this study is to analyze the environmental efficiency level and trend of the transportation sector in the upper–mid–downstream of the Yangtze River Economic Belt and the JingJinJi region in China and assess the effectiveness of policies for protecting the low-carbon environment.

Design/methodology/approach

This study uses the meta-frontier slack-based measure (SBM) approach to evaluate environmental efficiency, which targets and classifies specific regions into regional groups. First, this study employs the SBM with the undesirable outputs to construct the environmental efficiency measurement models of the four regions under the meta-frontier and group frontiers, respectively. Then, this study uses the technology gap ratio to evaluate the gap between the group frontier and the meta-frontier.

Findings

The analysis reveals several key findings: (1) the JingJinJi region and the downstream of the YEB had achieved the overall optimal production technology in transportation than the other two regions; (2) significant technology gaps in environmental efficiency were observed among these four regions in China; and (3) the downstream region of the YEB exhibited the lowest levels of energy consumption and excessive CO2 emissions.

Originality/value

To evaluate the differences in environmental efficiency resulting from regions and technological gaps in transportation, this study employs the meta-frontier model, which overcomes the limitation of traditional environmental efficiency methods. Furthermore, in the practical, the study provides the advantage of observing the disparities in transportation efficiency performed by the Yangtze River Economic Belt and the Beijing–Tianjin–Hebei regions.

Details

Journal of International Logistics and Trade, vol. 22 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Article
Publication date: 29 December 2023

Dara Sruthilaya, Aneetha Vilventhan and P.R.C. Gopal

The purpose of this paper is to identify and analyze the interdependence of project complexity factors (PCFs) in metro rail projects using the Decision-Making Trial and Evaluation…

Abstract

Purpose

The purpose of this paper is to identify and analyze the interdependence of project complexity factors (PCFs) in metro rail projects using the Decision-Making Trial and Evaluation Laboratory (DEMATEL). The study provides qualitative and quantitative analysis of project complexities factors and their relationships. The results of the study facilitate effective project planning, proactive risk management and informed decision-making by stakeholders.

Design/methodology/approach

This study employs a case-based method for identifying PCFs and a DEMATEL method for analyzing the interdependence of complexity factors in metro rail projects. Initially, PCFs were identified through an extensive literature review. To validate and refine these factors, semi-structured interviews were conducted with thirty experienced professionals, each having 5–20 years of experience in roles such as project management, engineering, and planning. Further, elevated and underground metro rail projects were purposefully selected as cases, for identifying the similarities and differences in PCFs. A questionnaire survey was conducted with various technical experts in metro rail projects. These experts rated the impact of PCFs on a five-point Likert scale, for the evaluation of the interdependence of PCFs. The DEMATEL technique was used to analyze the interdependencies of the PCFs.

Findings

Metro rail projects are influenced by project complexity, which significantly impacts their performance. The analysis reveals that “design problems with existing structures,” “change in design or construction” and “land acquisition” are the key factors contributing to project complexity.

Originality/value

The study of project complexity in metro rail projects is limited because most of the studies have studies on examining complexity in mega projects. The existing literature lacks adequate attention in identifying project complexity and its effects on metro rail project performance. This research aims to bridge this gap by examining project complexity and interdependencies in metro rail projects.

Details

Built Environment Project and Asset Management, vol. 14 no. 2
Type: Research Article
ISSN: 2044-124X

Keywords

Book part
Publication date: 19 March 2024

Noah McClain

In the mid-2000s, the operator of New York City’s mass transit network committed more than a half-billion dollars to military contractor Lockheed Martin for a security technology…

Abstract

In the mid-2000s, the operator of New York City’s mass transit network committed more than a half-billion dollars to military contractor Lockheed Martin for a security technology capable, in part, of inferring threats based on analysis of data streams, of developing response strategies, and taking automated action toward alerts and calamities in light of evolving circumstances. The project was a failure. This chapter explores the conceptualization and development of this technology – rooted in cybernetics – and compares its conceptual underpinnings with some situated problems of awareness, communication, coordination, and action in emergencies as they unfold in one of the busiest transport systems in the world, the New York subway. The author shows how the technology, with all the theatrical trappings of a “legitimate” security solution, was apparently conceived without a grounded understanding of actual use-cases, and the degree to which the complex interactions which give rise to subway emergency can be anticipated in – and therefore managed through – a technological system. As a case-study, the chapter illustrates the pitfalls of deploying technology against problems which are not well-defined in the first place, to the neglect of investments against much more fundamental problems – such as inadequate communication systems, and unstable relationships with emergency response agencies – which might offer guaranteed benefits, and indeed lay a firm groundwork for future deployment of more ambitious technology.

Details

Technology vs. Government: The Irresistible Force Meets the Immovable Object
Type: Book
ISBN: 978-1-83867-951-4

Keywords

Article
Publication date: 17 December 2021

Koorosh Gharehbaghi, Kerry McManus, Maged Georgy, Ken Farnes, Francesca Pagliara and Matt Myers

Through the significance matrix, this paper aims to investigate and explore the main sustainability factors of mega transportation infrastructure projects. Sydney’s Metro mega…

Abstract

Purpose

Through the significance matrix, this paper aims to investigate and explore the main sustainability factors of mega transportation infrastructure projects. Sydney’s Metro mega transportation infrastructure is used as a case study. Sydney’s Metro was selected because of its sustainability challenges faced because of the areas’ diverse ecological zones. Sydney’s Metro is thus examined as the basis of best practice for the determination of the sustainability factors of transportation infrastructures.

Design/methodology/approach

Using the significance matrix as a methodology, this research evaluates the environmental impact assessment and environmental assessment processes, to alleviate the problems of the mega transportation infrastructure.

Findings

This research found that a more comprehensive determination is needed to further analyse the sustainability factors of mega transportation infrastructures, use of a significance matrix would further assess the environmental complexities of mega transportation infrastructures and the sustainability factors of mega transportation infrastructures should include a nonlinear and asymmetrical scheme highlighting its components and carefully outlining its integration and consolidation.

Originality/value

Although there is concurrent research into sustainability factors of mega transportation, this paper undertakes a new methodology for such infrastructure. While the significance matrix is not a new concept, it has never been used specifically for mega transportation infrastructure. Subsequently, using the significance matrix as a methodology, this research undertakes such environmental analysis and assessment and thus produces a qualitative risk analysis matrix. The findings from this research will ultimately assist the key stakeholders of mega transportation infrastructures to better plan, monitor and support similar projects.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 23 January 2024

Rubens C.N. Oliveira and Zhipeng Zhang

The purpose of this study is to address the extended travel time caused by dwelling time at stations for passengers on traditional rail transit lines. To mitigate this issue, the…

Abstract

Purpose

The purpose of this study is to address the extended travel time caused by dwelling time at stations for passengers on traditional rail transit lines. To mitigate this issue, the authors propose the “Non-stop” design, which involves trains comprised of modular vehicles that can couple and uncouple from each other during operation, thereby eliminating dwelling time at stations..

Design/methodology/approach

The main contributions of this paper are threefold: first, to introduce the concept of non-stop rail transit lines, which, to the best of the authors’ knowledge, has not been researched in the literature; second, to develop a framework for the operation schedule of such a line; and third, the author evaluate the potential of its implementation in terms of total passenger travel time.

Findings

The total travel time was reduced by 6% to 32.91%. The results show that the savings were more significant for long commutes and low train occupancy rates.

Research limitations/implications

The non-stop system can improve existing lines without the need for the construction of additional facilities, but it requires technological advances for rolling stock.

Originality/value

To eliminate dwelling time at stations, the authors present the “Non-stop” design, which is based on trains composed of locomotives that couple and uncouple from each other during operation, which to the best of the authors’ knowledge has not been researched in the literature.

Details

Smart and Resilient Transportation, vol. 6 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 13 February 2024

Jiajun Zhou, Chao Chen, Chun Tian, Gengwei Zhai and Hao Yu

To authenticate the existence and principles of the adhesion recovery phenomenon under water pollution conditions, an innovative circumferential rail–wheel adhesion test rig was…

Abstract

Purpose

To authenticate the existence and principles of the adhesion recovery phenomenon under water pollution conditions, an innovative circumferential rail–wheel adhesion test rig was used. The study conducted extensive tests on the adhesion characteristics under large sliding conditions.

Design/methodology/approach

Experiments were conducted to investigate the influence of speed, axle load and slip on adhesion recovery. Based on the experimental results, the adhesion recovery transition function was re-fitted.

Findings

The study reveals that the adhesion recovery phenomenon truly exists under water conditions. The adhesion coefficient shows an increasing trend with the growth of the slip ratio. Moreover, at the current speed and axle load levels, the adhesion recovery is directly proportional to the square of the slip ratio and inversely proportional to the axle load.

Originality/value

The phenomenon of adhesion recovery and the formulated equations in this study can serve as an experimental and theoretical foundation for the design of braking and anti-skid control algorithms for trains.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0379/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 15 February 2024

Di Kang, Steven W. Kirkpatrick, Zhipeng Zhang, Xiang Liu and Zheyong Bian

Accurately estimating the severity of derailment is a crucial step in quantifying train derailment consequences and, thereby, mitigating its impacts. The purpose of this paper is…

Abstract

Purpose

Accurately estimating the severity of derailment is a crucial step in quantifying train derailment consequences and, thereby, mitigating its impacts. The purpose of this paper is to propose a simplified approach aimed at addressing this research gap by developing a physics-informed 1-D model. The model is used to simulate train dynamics through a time-stepping algorithm, incorporating derailment data after the point of derailment.

Design/methodology/approach

In this study, a simplified approach is adopted that applies a 1-D kinematic analysis with data obtained from various derailments. These include the length and weight of the rail cars behind the point of derailment, the train braking effects, derailment blockage forces, the grade of the track and the train rolling and aerodynamic resistance. Since train braking/blockage effects and derailment blockage forces are not always available for historical or potential train derailment, it is also necessary to fit the historical data and find optimal parameters to estimate these two variables. Using these fitted parameters, a detailed comparison can be performed between the physics-informed 1-D model and previous statistical models to predict the derailment severity.

Findings

The results show that the proposed model outperforms the Truncated Geometric model (the latest statistical model used in prior research) in estimating derailment severity. The proposed model contributes to the understanding and prevention of train derailments and hazmat release consequences, offering improved accuracy for certain scenarios and train types

Originality/value

This paper presents a simplified physics-informed 1-D model, which could help understand the derailment mechanism and, thus, is expected to estimate train derailment severity more accurately for certain scenarios and train types compared with the latest statistical model. The performance of the braking response and the 1-D model is verified by comparing known ride-down profiles with estimated ones. This validation process ensures that both the braking response and the 1-D model accurately represent the expected behavior.

Details

Smart and Resilient Transportation, vol. 6 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 28 February 2023

Aman Dua, Rishika Chhabra and Deepankar Sinha

The first purpose is to assess the quality of containerized multimodal export and the second is to develop and demonstrate the design of a service network with quality approach.

Abstract

Purpose

The first purpose is to assess the quality of containerized multimodal export and the second is to develop and demonstrate the design of a service network with quality approach.

Design/methodology/approach

The article used the structural equation model to develop a model to measure the quality of multimodal transportation for containerized exports and finalized the model with an alternative approach. The evolutionary algorithm had been used to design a service network based on quality.

Findings

Provided factors affecting quality of multimodal transportation and reverse to one hypothesis, the construct variation in cost, time shape and quantity did not affect the quality of multimodal transportation for containerized exports. The model without variation construct was finalized by exploring causality.

Research limitations/implications

This research had scope till container loading onto the vessel and assessed the quality for containerized cargo only, and second research purpose is limited by assumed values of fitness function and the limited number of nodes, in service network design demonstration.

Practical implications

This research provided a tool to measure the quality of multimodal transportation for containerized exports and demonstrated the field application of the model developed in service network design. This approach included all factors applicable across the container movement. The integrated approach of the article provided an organized method to design a service network for containerized exports.

Originality/value

This work provided the tool to assess the quality of multimodal transportation for containerized exports and developed an approach to design a service network of multimodal transportation based on quality. This approach has considered the factors of multimodal transportation comprehensively in contrast to the optimization approaches based on operation research techniques.

Details

Benchmarking: An International Journal, vol. 31 no. 1
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 14 February 2024

Tiep Nguyen, Nicholas Chileshe, Duc Ty Ho, Viet Thanh Nguyen and Quang Phu Tran

Urban rail projects are typically large-scale transport infrastructure projects (megaprojects) which have many potential risks that can influence the strategic goals of owners…

Abstract

Purpose

Urban rail projects are typically large-scale transport infrastructure projects (megaprojects) which have many potential risks that can influence the strategic goals of owners. However, there is a paucity of studies which explore the impact of risks on both “urban rail” project time and cost together considering quantitative assessments. Therefore, this paper focuses on investigating critical risks and quantifying such risk impacts on urban railway project schedule and cost in practice.

Design/methodology/approach

A combination of qualitative and quantitative research methods comprising semi-interviews with five experts and a questionnaire survey of 132 professional respondents is used. The data were modeled using Monte Carlo Simulation to predict the probability of project schedule and cost.

Findings

The results show that 30 risk variables are categorized into seven main groups which have significant impacts on both project time and cost. Outstanding five risk variables were highlighted as follows: (1) project site clearance and land compensation; (2) design changes; (3) physical project resources; (4) contractors’ competencies and (5) project finance. Such findings were supported by Monte Carlo simulation which predicted in the worst case that the project may suffer 11.03 months’ delays and have cost overrun with a contingency of US$287.68 million.

Originality/value

This study expands our knowledge about time and cost contingency of urban metro railway implementation across developing economies and particularly within the context of Vietnam. Policymakers will not only gain an understanding about risk structure but will also recognize the significant impacts of critical risk through risk impact modeling and simulation. Such an approach provides insights into risk treatment priorities for planners so that they can proactively establish suitable strategies for risk mitigation in practice.

Details

Built Environment Project and Asset Management, vol. 14 no. 2
Type: Research Article
ISSN: 2044-124X

Keywords

1 – 10 of 167