Search results

1 – 1 of 1
Content available
Article
Publication date: 3 July 2017

Rahila Umer, Teo Susnjak, Anuradha Mathrani and Suriadi Suriadi

The purpose of this paper is to propose a process mining approach to help in making early predictions to improve students’ learning experience in massive open online…

Abstract

Purpose

The purpose of this paper is to propose a process mining approach to help in making early predictions to improve students’ learning experience in massive open online courses (MOOCs). It investigates the impact of various machine learning techniques in combination with process mining features to measure effectiveness of these techniques.

Design/methodology/approach

Student’s data (e.g. assessment grades, demographic information) and weekly interaction data based on event logs (e.g. video lecture interaction, solution submission time, time spent weekly) have guided this design. This study evaluates four machine learning classification techniques used in the literature (logistic regression (LR), Naïve Bayes (NB), random forest (RF) and K-nearest neighbor) to monitor weekly progression of students’ performance and to predict their overall performance outcome. Two data sets – one, with traditional features and second, with features obtained from process conformance testing – have been used.

Findings

The results show that techniques used in the study are able to make predictions on the performance of students. Overall accuracy (F1-score, area under curve) of machine learning techniques can be improved by integrating process mining features with standard features. Specifically, the use of LR and NB classifiers outperforms other techniques in a statistical significant way.

Practical implications

Although MOOCs provide a platform for learning in highly scalable and flexible manner, they are prone to early dropout and low completion rate. This study outlines a data-driven approach to improve students’ learning experience and decrease the dropout rate.

Social implications

Early predictions based on individual’s participation can help educators provide support to students who are struggling in the course.

Originality/value

This study outlines the innovative use of process mining techniques in education data mining to help educators gather data-driven insight on student performances in the enrolled courses.

Details

Journal of Research in Innovative Teaching & Learning, vol. 10 no. 2
Type: Research Article
ISSN: 2397-7604

Keywords

1 – 1 of 1