Search results

1 – 10 of 60
Article
Publication date: 18 January 2013

Shaofei Chen, Hongfu Liu, Jing Chen and Lincheng Shen

The purpose of this paper is to plan the penetration trajectory for unmanned aerial vehicle (UAV) in the presence of radar‐guided surface to air missiles (SAMs).

Abstract

Purpose

The purpose of this paper is to plan the penetration trajectory for unmanned aerial vehicle (UAV) in the presence of radar‐guided surface to air missiles (SAMs).

Design/methodology/approach

The penetration trajectory planning problem is modelled based on four aspects of radar tracking features. As penetration just utilizes the low observability of radar cross section (RCS) to satisfy temporal constraints of tracking, the problem is formulated as multi‐phase trajectory planning with detected probability (MTP‐DP). While utilizing both the low observability of RCS and the radial velocity blind area of radar, the problem is formulated as multi‐phase trajectory planning with detected probability and radial velocity (MTP‐DP&RV). The pseudospectral multi‐phase optimal control based trajectory planning algorithm is proposed.

Findings

The results of the examples illustrate that the multi‐phase trajectory planning method can finely utilize the radar tracking features to optimize the comprehensive efficiency of penetration. The pseudospectral multi‐phase optimal control based trajectory planning algorithm could effectively solve the trajectory planning problem.

Originality/value

This paper provides new structured method to plan UAV penetration trajectory for military application and academic study.

Details

Aircraft Engineering and Aerospace Technology, vol. 85 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 3 May 2013

Maher Raddaoui

Rotating flows are very important because they are found in industrial and domestic applications. For a good performance, it is important to dimension correctly the energy…

Abstract

Purpose

Rotating flows are very important because they are found in industrial and domestic applications. For a good performance, it is important to dimension correctly the energy efficiency and the lifespan of the apparatuses while studying, for example, the influence of their physical and geometrical characteristics on the various hydrodynamic constraints, thermal and mechanics which they will support. The purpose of this paper is to describe experiments and a numerical study of the inter‐disc space effects on the mean and the turbulent characteristics of a Von Karman isotherm steady flow between counter‐rotating disks.

Design/methodology/approach

Experimental results are obtained by the laser Doppler anemometer technique performed at IRPHE (Institute of Research on the Phenomena out Equilibrium) in Marseille, France. The numerical predictions are based on one‐point statistical modeling using a low Reynolds number second‐order full stress transport closure (RSM model).

Findings

It was found that the level of radial velocity increases with the aspect ratio near to the axis of rotation but this phenomenon is reversed far from this zone; the level of tangential velocity, of turbulence kinetic energy and of the torsion are definitely higher for the largest aspect ratio. The best contribution of this work is, at the same time, the new experimental and numerical database giving the effect of the aspect ratio of the cavity on the intensity of turbulence for Von Karman flow between two counter rotating disks.

Research limitations/implications

The limitation of this work is that it concerns rotating flows with very high speeds because the phenomena of instability appear and the application of this model for cavities of forms is not obvious.

Practical implications

This work is of technological interest; it can be exploited by industrialists to optimize the operation of certain machines using this kind of flow. It can be exploited in the teaching of certain units of Masters courses: gathering experimental techniques; numerical methods; and theoretical knowledge.

Social implications

This work can also have a social interest where this kind of simulation can be generalized with other types of flows responsible for certain phenomena of society, such as the phenomenon of pollution. This work can have a direct impact on everyday life by the exploitation of the rotary flows, such as being a very clean and very economic means to separate the undesirable components present in certain fluid effluents.

Originality/value

The best contribution of this work is the new experimental and numerical database giving the effect of the aspect ratio of the cavity on the intensity of turbulence for Von Karman flow between two counter rotating disks.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1992

VIJAY K. GARG

A finite difference solution for steady natural convective flow within the human eye, modelled as a sphere with a specified temperature distribution over its surface, has been…

Abstract

A finite difference solution for steady natural convective flow within the human eye, modelled as a sphere with a specified temperature distribution over its surface, has been obtained. The stream function—vorticity formulation of the equations of motion for the unsteady axisymmetric flow is used; interest lying in the final steady solution. Forward differences are used for the time derivatives and second‐order central differences for the space derivatives. The alternating direction implicit method is used for solution of the discretization equations. Local one‐dimensional grid adaptation is used to resolve the steep gradients in some regions of the flow at large Rayleigh numbers. The break‐up into multi‐cellular flow is found at high Rayleigh numbers. Results identify regions of stagnant fluid in locations similar to those of blind spots in the eye.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 February 2024

Md Atiqur Rahman

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and…

Abstract

Purpose

The research focused on analysing a unique type of heat exchanger that uses swirling air flow over heated tubes. This heat exchanger includes a round baffle plate with holes and opposite-oriented trapezoidal air deflectors attached at different angles. The deflectors are spaced at various distances, and the tubes are arranged in a circular pattern while maintaining a constant heat flux.

Design/methodology/approach

This setup is housed inside a circular duct with airflow in the longitudinal direction. The study examined the impact of different inclination angles and pitch ratios on the performance of the heat exchanger within a specific range of Reynolds numbers.

Findings

The findings revealed that the angle of inclination significantly affected the flow velocity, with higher angles resulting in increased velocity. The heat transfer performance was best at lower inclination angles and pitch ratios. Flow resistance decreased with increasing angle of inclination and pitch ratio.

Originality/value

The average thermal enhancement factor decreased with higher inclination angles, with the maximum value observed as 0.94 at a pitch ratio of 1 at an angle of 30°.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 February 2018

Alessandro Mauro, Mario R. Romano, Vito Romano and P. Nithiarasu

The purpose of this paper is to compare the fluid dynamic performance of two Aqueous Humor (AH) ocular drainage devices, the SOLX® Gold Micro Shunt (GMS) and the novel Silicon…

Abstract

Purpose

The purpose of this paper is to compare the fluid dynamic performance of two Aqueous Humor (AH) ocular drainage devices, the SOLX® Gold Micro Shunt (GMS) and the novel Silicon Shunt Device (SSD), implanted by surgeons in human eyes to reduce the IntraOcular Pressure towards physiological values, by draining the AH from the Anterior Chamber to the Suprachoroidal Space, to cure eyes with glaucoma.

Design/methodology/approach

The generalized porous medium model is solved to simulate the AH flow through the two ocular drainage devices and the surrounding porous tissues of the eye.

Findings

In the GMS, probable stagnation regions have been found, due to the very small AH velocity values inside the device and to the surrounding tissues, creating possible blockage and malfunction of the device. The simple microtubular geometry of the novel SSD allows to have a regular AH flow and to choose shunts with different diameters and/or with the presence of radial holes, based on patient needs, with consequent reduction of post-operative complications.

Research limitations/implications

The present model will be further developed taking into account the insertion of the present drainage devices inside the anterior section of the eye. The present results show the comparative fluid dynamic performance of the two shunts considered, and can be useful for surgeons to choose the adequate shunt, based on the required AH flow rate for a specific patient.

Practical implications

The present numerical approach, employing the generalized porous medium model, represents a useful tool to study the fluid dynamics of ocular drainage devices and to design these shunts, to reduce post-operative complications.

Originality/value

The generalized porous medium model is here applied for the first time to simulate the interaction of ocular drainage devices with the surrounding porous tissues of the eye.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1951

THE Nineteenth Salon International de l'Aeronautiquc was principally a British and French affair, although there were notable contributions also from the Netherlands, Italy and…

Abstract

THE Nineteenth Salon International de l'Aeronautiquc was principally a British and French affair, although there were notable contributions also from the Netherlands, Italy and the U.S.A. As an exhibition, however, it was patchy and many of the exhibitors showed nothing new; some because of security restrictions, but others undoubtedly because they simply had nothing new to show after two years. The restrictions and economics of today were very much in evidence, and it was even surprising how some of the manufacturers have managed to exist at all since the end of the War.

Details

Aircraft Engineering and Aerospace Technology, vol. 23 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 October 1957

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Reports and Technical Memoranda of the United States…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Reports and Technical Memoranda of the United States National Advisory Committee for Aeronautics and publications of other similar Research Bodies as issued.

Details

Aircraft Engineering and Aerospace Technology, vol. 29 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 18 November 2022

Jing Yin, Jiahao Li, Ahui Yang and Shunyao Cai

In regarding to operational efficiency and safety improvements, multiple tower crane service scheduling problem is one of the main problems related to tower crane operation but…

Abstract

Purpose

In regarding to operational efficiency and safety improvements, multiple tower crane service scheduling problem is one of the main problems related to tower crane operation but receives limited attention. The current work presents an optimization model for scheduling multiple tower cranes' service with overlapping areas while achieving collision-free between cranes.

Design/methodology/approach

The cooperative coevolutionary genetic algorithm (CCGA) was proposed to solve this model. Considering the possible types of cross-tasks, through effectively allocating overlapping area tasks to each crane and then prioritizing the assigned tasks for each crane, the makespan of tower cranes was minimized and the crane collision avoidance was achieved by only allowing one crane entering the overlapping area at one time. A case study of the mega project Daxing International Airport has been investigated to evaluate the performance of the proposed algorithm.

Findings

The computational results showed that the CCGA algorithm outperforms two compared algorithms in terms of the optimal makespan and the CPU time. Also, the convergence of CCGA was discussed and compared, which was better than that of traditional genetic algorithm (TGA) for small-sized set (50 tasks) and was almost the same as TGA for large-sized sets.

Originality/value

This paper can provide new perspectives on multiple tower crane service sequencing problem. The proposed model and algorithm can be applied directly to enhance the operational efficiency of tower cranes on construction site.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 May 1940

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Committee, Reports and Technical Notes of the U.S. National Advisory…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Committee, Reports and Technical Notes of the U.S. National Advisory Committee for Aeronautics and publications of other similar research bodies as issued

Details

Aircraft Engineering and Aerospace Technology, vol. 12 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 September 1968

IN the two years since the last Farnborough Air Show was held by the Society of British Aerospace Companies the aircraft industry has achieved an almost complete metamorphosis…

Abstract

IN the two years since the last Farnborough Air Show was held by the Society of British Aerospace Companies the aircraft industry has achieved an almost complete metamorphosis from the body blows in the form of major programme cancellations that almost felled it in 1965 to the very healthy position that it holds today.

Details

Aircraft Engineering and Aerospace Technology, vol. 40 no. 9
Type: Research Article
ISSN: 0002-2667

1 – 10 of 60