Search results

1 – 10 of 78
Article
Publication date: 4 January 2013

Altaf H. Basta, Houssni El‐Saied and Vivian F. Lotfy

The purpose of this paper is to study the possibility of preparing high performance, agro‐based composites from rice straw, using eco‐polyalcohol polymers‐based adhesive system…

Abstract

Purpose

The purpose of this paper is to study the possibility of preparing high performance, agro‐based composites from rice straw, using eco‐polyalcohol polymers‐based adhesive system. The utilization of rice straw (undesirable biowastes) for the production of high quality biocomposite products, will add economic value, help to reduce the environmental impact of waste disposal and, most importantly, provide a potentially inexpensive alternative to the existing commercial artificial wood‐panels.

Design/methodology/approach

Simple synthesizing and optimizing the polyalcohol polymers‐based non‐toxic adhesive system were carried out, by blending corn starch, as natural polyalcohol polymer with polyvinyl alcohol, as synthetic polyalcohol polymers‐based adhesive (St/PV adhesive), at temperature ∼75°C. The percentages of adhesive components, type of starch, bonding temperature and time were optimized. Assessment of the synthesized adhesive was performed from its adhesion behavior (bond strength), in comparison with commercial thermosetting resin (urea‐formaldehyde), as well as the properties (mechanical and physical properties) of the composites produced. The effects of amount and type of water resistance co‐additives (paraffin wax and polyester), on mechanical properties of RS‐based composite were also optimized.

Findings

The promising adhesive system exhibits improved performance over a previously commercially HCHO‐based adhesive (UF), and results bonding strength 9.8 N/mm2, as well as MOR, IB and TS of RS‐based composites up to 31 N/mm2, 0.49 N/mm2 and 20%, respectively.

Research limitations/implications

Through the studied eco‐adhesive with relatively high natural polyalcohol polymer (starch) in presence of water‐resistance additive (PE) provided a good bonding strength and comparative RS‐based composite properties, with that produced from commercial UF. For the mechanical properties (MOR and IB) are complied the standard values; while water resistance is still higher. Further study is needed to solve this problem.

Practical implications

The approach provided a HCHO‐free adhesive with good bonding strength, comparative board strength and water resistance, reasonable working life, and without formaldehyde emission. Starch‐based adhesive with low percentages of polyvinyl alcohol is considered a promising inexpensive alternate adhesive in wood industry based on rice straw wastes, which traditionally required expensive pMDI.

Originality/value

The paper provides a potential way to utilise undesirable rice by‐product (RS), corn starch as industrial raw material. This will benefit farmers significantly. Meanwhile, the modified starch adhesive with low percentage of PVA is promising to partly or completely replace urea formaldehyde resin and pMDI that are mainly used in wood industry, or pMDI in RS‐based artificial wood, avoiding formaldehyde emission or toxic gases during exposed to burning, and reducing the dependence on petroleum products.

Article
Publication date: 6 March 2017

Altaf Halim Basta, Houssni El-Saied, Amin Mahmoud Baraka and Vivian Fayez Lotfy

The purpose of this research paper focused on studying the role of activated carbons (ACs), which were synthesized from long-chain aldehyde-based xerogels (Xs-AC), as benefit…

Abstract

Purpose

The purpose of this research paper focused on studying the role of activated carbons (ACs), which were synthesized from long-chain aldehyde-based xerogels (Xs-AC), as benefit additives to enhance the application of a low-cost urea formaldehyde (UF) adhesive for production of rice straw (RS) composites complying with both the standard specifications of particle-board type and the board produced from using conventional adhesive of RS fibers (methylene diphenyl diisocyanate, MDI). The results are supported by differential scanning calorimetry (DSC) analysis, which indicated the curing and interaction of RS fibers with the adhesive systems.

Design/methodology/approach

RS-based composites of particle-board type were prepared from applying new Xs-AC–UF adhesive systems to RS particles. For comparison, particle boards by using commercial UF and 4 per cent MDI were also prepared. To clear the beneficial effect of X-ACs as new HCHO (formaldehyde)-scavengers, the properties of the resulted boards were compared with those produced from the previous investigated scavenger: amide-containing starch-UF (AM/St–UF), and treated RS. DSC analysis was performed on the RS adhesive system, to follow the curing and the interaction behavior of UF with fibers in the presence of Xs-ACs.

Findings

The promising results obtained of RS particle boards from using the investigated new HCHO-scavenger are modulus of rupture (MOR) = 17.2 MPa, modulus of elasticity (MOE) = 4,689 MPa and internal bond (IB) strength = 0.49 MPa. While, the thickness swelling (TS) and maximum reduction in free-HCHO are 48.5 and 44.6 per cent, respectively; this reduction value specified the particle-board of E1-E2 type.

Research limitations/implications

The X-AC-UF adhesive systems and treated RS provided particle boards with mechanical properties (MOR, MOE and IB) that met the standard specification values (class M-2 according to ANSI standard and P-2 according to EN standard requirements), together with maximum reduction in toxicity of UF. However, the resistance in water swelling property is weak and needs further study to be solved.

Practical implications

The incorporation of small percentage of new HCHO-scavenger (X-AC) to UF is an effective way to improve its thermal behavior. Moreover, the mechanical properties of agro-based composites based on the treated RS waste together with the X-AC-UF system exceeded those values of panels produced from (AM/St-UF) and also from (4 per cent MDI).

Social implications

Incorporating the Xs-AC to commercial UF will be of benefit for saving the health of wood co-workers and motivating the wood mill to export its wood products, as well as minimizing the export of MDI.

Originality/value

This paper was based on enhancing the potential utilization of both undesirable RS agro wastes and environmentally unacceptable low-cost UF adhesive in the production of agro-composites that comply with the International Standard Specifications of particle board type. In this respect, a new HCHO-scavenger was synthesized and applied, based on AC from non-conventional xerogels. This study presents a solution to protect the environment from pollution, as a result of burning the undesirable RS, as well as to protect the workers and users of wood panels from exposure to the toxic and carcinogenic gas (formaldehyde). It also benefits in replacing the high cost of the RS adhesive (MDI) by using low-cost modified UF.

Article
Publication date: 3 May 2016

Altaf H. Basta, Houssni El-Saied and Emad M. Deffallah

The purpose of this paper is to examine the effects of denaturised rice bran (RB) and route of its incorporation during synthesis of urea-formaldehyde adhesive, on the performance…

Abstract

Purpose

The purpose of this paper is to examine the effects of denaturised rice bran (RB) and route of its incorporation during synthesis of urea-formaldehyde adhesive, on the performance of the resulting adhesive, especially viscosity, free-formaldehyde (HCHO) and quality of the produced bagasse-based composites, in comparison with those produced from commercial urea formaldehyde (UF) and RB-added UF.

Design/methodology/approach

The experiments were carried out using different denaturised RB at different percentages (1-5 per cent) and pH’s (9-11 per cent). These denaturised RB were incorporated at the last synthesis stage of UF synthesis process. The assessment was carried out on both the viscosity and environmental safety of the adhesive system, as well as the quality of the manufactured bagasse-based composites, of the particleboards (static bending, internal bond (IB) strength and water resistance properties), in comparison to commercial UF and RB added to UF. The performance of the adhesive system was evidenced by the thermogravimetric analysis and differential scanning calorimetry analyses.

Findings

The results showed that maximum static bending [modulus of rupture (MOR) and modulus of elasticity (MOE)], IB strength and water resistance properties of the resulted wood product accompanied the incorporating 5 per cent of the denaturised RB (pH = 9.0), at the last synthesised stage of UF synthesis process. Where, this synthesis process provided adhesive with viscosity nearly approaching to commercial UF adhesive, and reduced the free-HCHO of adhesive and board by approximately 56 and 49 per cent, respectively. For mechanical and water resistance properties, it provided board with 24.5 MPa MOR, 3,029 MPa MOE, 0.64 MPa IB, 11 per cent swelling (SW) and 20.5 per cent absorption. These properties fulfil the requirements of high grade particleboards American National Standard Institute (ANSI) A208.1, especially with respect to static bending values and water swelling property.

Research limitations/implications

Incorporating 5 per cent of pre-denaturised RB, at pH 9.0, in wet form, and in the last stage of synthesis UF, provided adhesive system with convenient viscosity together with lower free-HCHO and acceptable board properties, compared with that produced from commercial UF, or adding denaturised RB to already synthesised UF. For the mechanical (MOR, MOE and IB) and water resistance properties (SW per cent and absorption per cent) of the produced composite are complied the standard values of H-3 grade of particleboard.

Practical implications

Promising adhesive system is resulted from incorporating 5 per cent of pre-denaturised RB at pH 9.0, in wet form, during last stage of UF synthesis process.

Social implications

Incorporating the RB by-product of oil production to commercial UF or during synthesis of UF will be benefit for saving the healthy of wood co-workers, and motivating the wood mill to export its wood products.

Originality/value

The article provides a potential simple way to solve the drawback of increasing the viscosity of UF, as a result of adding RB, via incorporating the RB during synthesis process. The viscosity of the synthesised RB-modified UF approaches RB-free UF, and consequently the adhesive system easily penetrates through agro-fibres, and provides good bonding behaviour and high performance wood product (both quality and environmental by minimising formaldehyde emission or toxic gasses during board formation).

Open Access
Article
Publication date: 16 June 2021

Zrinka Buhin Šturlić, Mirela Leskovac, Krunoslav Žižek and Sanja Lučić Blagojević

The purpose of this paper is to prepare stabile emulsions with 0–15% of colloidal silica and high monomer/water ratio and to investigate the influence of silica addition and…

1194

Abstract

Purpose

The purpose of this paper is to prepare stabile emulsions with 0–15% of colloidal silica and high monomer/water ratio and to investigate the influence of silica addition and surface modification on the polyacrylate properties.

Design/methodology/approach

Improving the properties of the composite can be achieved by optimizing the compatibility between the phases of the composite system with improving the interactions at the matrix/filler interface. Therefore, the silica surface was modified with nonionic emulsifier octylphenol ethoxylate, cationic initiator 2,2'-azobis-(amidinopropane dihydrochloride) and 3-methacryloxypropyltrimethoxysilane and polyacrylate/silica nanocomposites were prepared via in situ emulsion polymerization. Particle size distribution, rheological properties of the emulsions and morphology, thermal properties and mechanical properties of the film prepared from the emulsions were investigated.

Findings

Polyacrylate/silica systems with unmodified silica, silica modified with nonionic emulsifier and cationic initiator have micrometer, while pure PA matrix and systems with silica modified with silane have nanometer particle sizes. Addition and surface modification of the filler increased emulsion viscosity. Agglomeration of silica particles in composites was reduced with silica surface modification. Silica filler improves thermal stability and tensile strength of polyacrylate.

Originality/value

This paper provides broad spectrum of information depending on filler surface modification and latex preparation via in situ emulsion polymerization and properties with high amount of filler and monomer/water ratio with the aim that prepared latex is suitable for film formation and final application.

Details

Pigment & Resin Technology, vol. 51 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 February 2022

Altaf A.H. Basta, Vivian Lotfy, Jehane Micky and Aya M. Salem

This paper aims to study the effect of hydrolysis route of hydroxypropyl cellulose (HPC) on its esterification performance as liquid crystal material. The assessment was carried…

Abstract

Purpose

This paper aims to study the effect of hydrolysis route of hydroxypropyl cellulose (HPC) on its esterification performance as liquid crystal material. The assessment was carried out from the data of spectra (Fourier-transform infrared analysis [FTIR] and 1H-nuclear magnetic resonance [1H-NMR]), thermal stability as well as optical properties via forming ordered mesophases at lower concentration than HPC.

Design/methodology/approach

The HPC was hydrolyzed by hydrochloric acid-methanol at times 9 and 18 h, and the products were esterified by decanoyl chloride. The products of hydrolysis and the esterification were characterized by FTIR, NMR, nonisothermal analysis, thermo-gravimetric analysis (TGA) and polarizing microscope to evaluate the role of degree of substitution of HPC as a result of hydrolysis, on esterification degree, thermal stability and thermal and liquid crystal behavior of the final esterified HPC.

Findings

The pretreatment by acid hydrolysis of HPC was successful for synthesizing novel cholesteric hydroxypropyl cellulose ester. The data of FTIR and TGA thermal analysis proved that hydrolysis and esterification of HPC with the decanoyl chain significantly enhanced crystallinity of this cellulose derivative from 0.57 to (1.7–1.9). Moreover, they provided products with superior thermal stability than pure HPC, as noticed from increasing the activation energy of degradation (Ea) from 514.3 to 806.2 kJ/mol. The NMR measurement proved that hydrolysis of HPC for 9 and 18 h decreased the degree of substitution from 3 to 2.1 and 1.3, respectively. Moreover, the esterified HPC showed a promising birefringence texture (chiral nematic) besides decreasing the critical concentration from 30% for HPC to 10% for the esterified unhydrolyzed HPC, while superior decreasing to 1–5% was observed for the esterified hydrolyzed HPC.

Research limitations/implications

There are two stages for preparation of decanoyl ester hydroxypropyl cellulose. At the first stage, HPC was treated by hydrochloric acid-methanol in ratio 1:10 at times 9 and18 h. At the second stage, HPC and hydrolyzed HPC were refluxed with decanoyl chloride (1:6) in presence of nitrogen atmosphere. The final product was precipitated by distilled water.

Practical implications

There are two stages for preparation of decanoyl ester hydroxypropyl cellulose. At the first stage, HPC was treated by hydrochloric acid-methanol in ratio 1:10 at times 9 and18 h. At the second stage, HPC and hydrolyzed HPC were refluxed with decanoyl chloride (1:6) in presence of nitrogen atmosphere. The final product was precipitated by distilled water.

Originality/value

The novelty of this work was focused on enhancing the crystallinity, thermal stability and liquid crystal behavior of esterified HPC, via decreasing the degree of substitution and consequently the type of OH group subjected to esterification. The decanoyl ester formation from the hydrolyzed hydroxypropyl cellulose is able to form ordered mesophases at even low concentration (promising birefringence texture at concentrations 1–5%). It is worthy to notice that the investigated route is able to omit the role of graphene oxide in promoting the liquid crystal behavior of HPC, as it hasn't any effect on critical concentration. This work will promote the use of HPC in technological applications, e.g. high modulus fibers and electronic devices.

Details

Pigment & Resin Technology, vol. 52 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 22 September 2021

Altaf H. Basta, Vivian F. Lotfy and Aya M. Salem

This study aims to motivate the application of some low-cost minerals in synthesizing nanoparticles as effective additives on the performance of liquid crystal (LC) hydroxypropyl…

Abstract

Purpose

This study aims to motivate the application of some low-cost minerals in synthesizing nanoparticles as effective additives on the performance of liquid crystal (LC) hydroxypropyl cellulose (HPC) nanocomposite film, in comparison with carbon nanoallotrope.

Design/methodology/approach

Metallic nanoparticles of vanadium oxide, montmorillonite (MMT) and bentonite were synthesized and characterized by different techniques (Transmission electron microscopy [TEM], X-ray diffraction [XRD] and Fourier transform infrared [FTIR]). While the XRD, FTIR, non-isothermal analysis thermogravimetric analysis, mechanical analysis, scanning electron microscope and polarizing microscope were techniques used to evaluate the key role of metallic nanoparticles on the performance of HPC-nanocomposite film.

Findings

The formation of nanoparticles was evidenced from TEM. The XRD and FTIR measurements of nanocomposite films revealed that incorporating the mineral nanoparticles led to enhance the HPCs crystallinity from 14% to 45%, without chemical change of HPC structure. It is interesting to note that these minerals provide higher improvement in crystallinity than carbon nanomaterials (28%). Moreover, the MMT provided film with superior thermal stability and mechanical properties than pure HPC and HPC containing carbon nanoparticles, where it increased the Ea from 583.6 kJ/mol to 669.3 kJ/mol, tensile strength from 2.25 MPa to 2.8 MPa, Young’s modulus from 119 MPa to 124 MPa. As well as it had a synergistic effect on the LC formation and the birefringence texture of the nanocomposites (chiral nematic).

Research limitations/implications

Hydroxylpropyl cellulose-nanocomposite films were prepared by dissolving the HPC powder in water to prepare 50% concentration, (free or with incorporating 5% synthesized nanoparticles). To obtain films with uniform thickness, the prepared solutions were evenly spread on a glass plate via an applicator, by adjusting the thickness to 0.2 mm, then air dried.

Practical implications

These minerals provide higher improvement in crystallinity than carbon nanomaterials (28%), moreover, the MMT and bentonite provided films with superior thermal stability than pure HPC and HPC containing carbon nanoparticles. The mineral nanoparticles (especially MMT nanoclays) had a synergistic effect on LC formation and the birefringence texture of the nanocomposites (chiral nematic).

Social implications

This study presents the route to enhance the utilization of claystone available in El-Fayoum Province as the precursor for nanoparticles and production high performance LC nanocomposites.

Originality/value

This study presents the route for the valorization of low-cost mineral-based nanoparticles in enhancing the properties of HPC-film (crystallinity, thermal stability, mechanical strength), in comparison with carbon-based nanoparticles. Moreover, these nanoparticles provided more ordered mesophases and, consequently, good synergetic effect on LCs formation and the birefringence texture of the HPC-films.

Article
Publication date: 3 September 2019

Abhinav Kumar Sharma and Indrajit Mukherjee

The purpose of this paper is to address three key objectives. The first is the proposal of an enhanced multiobjective optimisation (MOO) solution approach for the mean and…

Abstract

Purpose

The purpose of this paper is to address three key objectives. The first is the proposal of an enhanced multiobjective optimisation (MOO) solution approach for the mean and mean-variance optimisation of multiple “quality characteristics” (or “responses”), considering predictive uncertainties. The second objective is comparing the solution qualities of the proposed approach with those of existing approaches. The third objective is the proposal of a modified non-dominated sorting genetic algorithm-II (NSGA-II), which improves the solution quality for multiple response optimisation (MRO) problems.

Design/methodology/approach

The proposed solution approach integrates empirical response surface (RS) models, a simultaneous prediction interval-based MOO iterative search, and the multi-criteria decision-making (MCDM) technique to select the best implementable efficient solutions.

Findings

Implementation of the proposed approach in varied MRO problems demonstrates a significant improvement in the solution quality in worst-case scenarios. Moreover, the results indicate that the solution quality of the modified NSGA-II largely outperforms those of two existing MOO solution strategies.

Research limitations/implications

The enhanced MOO solution approach is limited to parametric RS prediction models and continuous search spaces.

Practical implications

The best-ranked solutions according to the proposed approach are derived considering the model predictive uncertainties and MCDM technique. These solutions (or process setting conditions) are expected to be more reliable for satisfying customer specification compared to point estimate-based MOO solutions in real-life implementation.

Originality/value

No evidence exists of earlier research that has demonstrated the suitability and superiority of an MOO solution approach for both mean and mean-variance MRO problems, considering RS uncertainties. Furthermore, this work illustrates the step-by-step implementation results of the proposed approach for the six selected MRO problems.

Details

International Journal of Quality & Reliability Management, vol. 37 no. 1
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 16 January 2007

Daniel Marjavaara and Staffan Lundström

This paper aims to develop an efficient and accurate numerical method that can be used in the design process of the waterways in a hydropower plant.

1125

Abstract

Purpose

This paper aims to develop an efficient and accurate numerical method that can be used in the design process of the waterways in a hydropower plant.

Design/methodology/approach

A range of recently published (2002‐2006) works, which aim to form the basis of a shape optimization tool for flow design and to increase the knowledge within the field of computational fluid dynamics (CFD) and surrogate‐based optimization techniques.

Findings

Provides information about how crude the optimization method can be regarding, for example, the design variables, the numerical noise and the multi objectives, etc.

Research limitations/implications

It does not give a detailed interpretation of the flow behaviour due to the lack of validation data.

Practical implications

A very useful flow design methodology that can be used in both academy and industry.

Originality/value

Shape optimization of hydraulic turbine draft tubes with aid of CFD and numerical optimization techniques has not been performed until recently due to the high CPU requirements on CFD simulations. The paper investigates the possibilities of using the global optimization algorithm response surface methodology in the design process of a full scale hydraulic turbine draft tube.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 February 2009

Stoyan Stoyanov, Chris Bailey and Marc Desmulliez

This paper aims to present an integrated optimisation‐modelling computational approach for virtual prototyping that helps design engineers to improve the reliability and…

Abstract

Purpose

This paper aims to present an integrated optimisation‐modelling computational approach for virtual prototyping that helps design engineers to improve the reliability and performance of electronic components and systems through design optimisation at the early product development stage. The design methodology is used to identify the optimal design of lead‐free (Sn3.9Ag0.6Cu) solder joints in fine‐pitch copper column bumped flip‐chip electronic packages.

Design/methodology/approach

The design methodology is generic and comprises numerical techniques for computational modelling (finite element analysis) coupled with numerical methods for statistical analysis and optimisation. In this study, the integrated optimisation‐modelling design strategy is adopted to prototype virtually a fine‐pitch flip‐chip package at the solder interconnect level, so that the thermal fatigue reliability of the lead‐free solder joints is improved and important design rules to minimise the creep in the solder material, exposed to thermal cycling regimes, are formulated. The whole prototyping process is executed in an automated way once the initial design task is formulated and the conditions and the settings for the numerical analysis used to evaluate the flip‐chip package behaviour are specified. Different software modules that incorporate the required numerical techniques are used to identify the solution of the design optimisation problem related to solder joints reliability optimisation.

Findings

For fine‐pitch flip‐chip packages with copper column bumped die, it is found that higher solder joint volume and height of the copper column combined with lower copper column radius and solder wetting around copper column have a positive effect on the thermo‐mechanical reliability.

Originality/value

The findings of this research provide design rules for more reliable lead‐free solder joints for copper column bumped flip‐chip packages and help to establish further the technology as one of the viable routes for flip‐chip packaging.

Details

Soldering & Surface Mount Technology, vol. 21 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 10 February 2023

Varun Mahajan, Sandeep Kumar Mogha and R.K.Pavan Kumar Pannala

The main purpose of this paper is to determine the bias-corrected efficiencies and rankings of the selected hotels and restaurants (H&Rs) in India.

Abstract

Purpose

The main purpose of this paper is to determine the bias-corrected efficiencies and rankings of the selected hotels and restaurants (H&Rs) in India.

Design/methodology/approach

The data for the Indian H&R sector are collected from the Prowess database. The bootstrap data envelopment analysis (DEA) based on a constant return to scale (CRS), variable return to scale-input oriented (VRS-IP) and variable return to scale-output oriented (VRS-OP) are applied on H&Rs to obtain the bias-corrected efficiencies.

Findings

It is found that relative efficiencies using basic DEA methods of all the 45 H&Rs of India are overestimated. These efficiencies are corrected using bias correction through bootstrap DEA methods. The bounds for the efficiencies of each H&R are computed using all the adopted methods. All H&Rs are ranked using bias-corrected efficiencies, and the linear trend between ranks suggests that the H&Rs are ranked almost similarly by all the adopted methods.

Practical implications

To improve efficiency, Indian H&R companies must rethink their personnel needs by enhancing their workforce management capabilities. The government needs to extend more support to this sector by introducing a liberal legislation framework and supporting infrastructure policies.

Originality/value

There is a paucity of studies on H&Rs in India. The current study focused on measuring bias-corrected efficiencies of the selected H&Rs of India. This study is one of the few initiatives to explore bias-corrected efficiencies extensively using the bootstrap DEA method.

Details

Benchmarking: An International Journal, vol. 31 no. 1
Type: Research Article
ISSN: 1463-5771

Keywords

1 – 10 of 78