Search results

1 – 10 of 10
Article
Publication date: 5 February 2024

Swarup Mukherjee, Anupam De and Supriyo Roy

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk…

Abstract

Purpose

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk prioritization uses a risk priority number (RPN) aligned to the risk analysis. Imprecise information coupled with a lack of dealing with hesitancy margins enlarges the scope, leading to improper assessment of risks. This significantly affects monitoring quality and performance. Against the backdrop, a methodology that identifies and prioritizes the operational supply chain risk factors signifies better risk assessment.

Design/methodology/approach

The study proposes a multi-criteria model for risk prioritization involving multiple decision-makers (DMs). The methodology offers a robust, hybrid system based on the Intuitionistic Fuzzy (IF) Set merged with the “Technique for Order Performance by Similarity to Ideal Solution.” The nature of the model is robust. The same is shown by applying fuzzy concepts under multi-criteria decision-making (MCDM) to prioritize the identified business risks for better assessment.

Findings

The proposed IF Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) for risk prioritization model can improve the decisions within organizations that make up the chains, thus guaranteeing a “better quality in risk management.” Establishing an efficient representation of uncertain information related to traditional failure mode and effects analysis (FMEA) treatment involving multiple DMs means identifying potential risks in advance and providing better supply chain control.

Research limitations/implications

In a company’s supply chain, blockchain allows data storage and transparent transmission of flows with traceability, privacy, security and transparency (Roy et al., 2022). They asserted that blockchain technology has great potential for traceability. Since risk assessment in supply chain operations can be treated as a traceability problem, further research is needed to use blockchain technologies. Lastly, issues like risk will be better assessed if predicted well; further research demands the suitability of applying predictive analysis on risk.

Practical implications

The study proposes a hybrid framework based on the generic risk assessment and MCDM methodologies under a fuzzy environment system. By this, the authors try to address the supply chain risk assessment and mitigation framework better than the conventional one. To the best of their knowledge, no study is found in existing literature attempting to explore the efficacy of the proposed hybrid approach over the traditional RPN system in prime sectors like steel (with production planning data). The validation experiment indicates the effectiveness of the results obtained from the proposed IF TOPSIS Approach to Risk Prioritization methodology is more practical and resembles the actual scenario compared to those obtained using the traditional RPN system (Kim et al., 2018; Kumar et al., 2018).

Originality/value

This study provides mathematical models to simulate the supply chain risk assessment, thus helping the manufacturer rank the risk level. In the end, the authors apply this model in a big-sized organization to validate its accuracy. The authors validate the proposed approach to an integrated steel plant impacting the production planning process. The model’s outcome substantially adds value to the current risk assessment and prioritization, significantly affecting better risk management quality.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 15 February 2024

I Ketut Ardana, Suci Wulandari, Rr Sri Hartati and Abdul Muis Hasibuan

This study assesses postreplanting oil palm farming risks, analyzes seed procurement parameters, investigates seed institutions' performance factors and develops a framework for…

Abstract

Purpose

This study assesses postreplanting oil palm farming risks, analyzes seed procurement parameters, investigates seed institutions' performance factors and develops a framework for improved sustainability.

Design/methodology/approach

Incorporating data from 219 smallholder farmers in designated replanting areas, our study comprehensively evaluates seed supply performance, examining the roles of stakeholders and identifying potential risks in seed management. We assess these risks using the Risk Priority Number (RPN) methodology and Multidimensional Scaling (MDS) techniques.

Findings

The results show that the timing and quantity of oil palm seed supply have a relatively small impact on postreplanting failure risk. To mitigate this risk, focus on monitoring seed purity using high-quality Tenera oil palm-type seeds and early detection technology. Encourage seed-producing cooperatives to become legal seed producers for an inclusive system and consider smallholders' variety preferences.

Originality/value

This study’s significance lies in its comprehensive assessment of the risks associated with oil palm replanting on smallholder plantations, detailed analysis of critical parameters in seed procurement, investigation into the performance of palm oil seed institutions across various dimensions and development of a strategic framework to strengthen inclusive seed institutions for sustainable oil palm farming. This strategy holds valuable potential for the development of oil palm in Indonesia, particularly in expediting the smallholders' replanting program.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/IJSE-10-2023-0811

Details

International Journal of Social Economics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0306-8293

Keywords

Article
Publication date: 15 July 2022

Saleh Abu Dabous, Tareq Zadeh and Fakhariya Ibrahim

This study aims at introducing a method based on the failure mode, effects and criticality analysis (FMECA) to aid in selecting the most suitable formwork system with the minimum…

Abstract

Purpose

This study aims at introducing a method based on the failure mode, effects and criticality analysis (FMECA) to aid in selecting the most suitable formwork system with the minimum overall cost.

Design/methodology/approach

The research includes a review of the literature around formwork selection and analysis of data collected from the building construction industry to understand material failure modes. An FMECA-based model that estimates the total cost of a formwork system is developed by conducting a two-phased semi-structured interview and regression and statistical analyses. The model comprises material, manpower and failure mode costs. A case study of fifteen buildings is analysed using data collected from construction projects in the UAE to validate the model.

Findings

Results obtained indicate an average accuracy of 89% in predicting the total formwork cost using the proposed method. Moreover, results show that the costs incurred by failure modes account for 11% of the total cost on average.

Research limitations/implications

The analysis is limited to direct costs and costs associated with risks; other costs and risk factors are excluded. The proposed framework serves as a guide to construction project managers to enhance decision-making by addressing the indirect cost of failure modes.

Originality/value

The research proposes a novel formwork system selection method that improves upon the subjective conventional selection process by incorporating the risks and uncertainties associated with the failure modes of formwork systems into the decision-making process.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 27 March 2024

Temesgen Agazhie and Shalemu Sharew Hailemariam

This study aims to quantify and prioritize the main causes of lean wastes and to apply reduction methods by employing better waste cause identification methodologies.

Abstract

Purpose

This study aims to quantify and prioritize the main causes of lean wastes and to apply reduction methods by employing better waste cause identification methodologies.

Design/methodology/approach

We employed fuzzy techniques for order preference by similarity to the ideal solution (FTOPSIS), fuzzy analytical hierarchy process (FAHP), and failure mode effect analysis (FMEA) to determine the causes of defects. To determine the current defect cause identification procedures, time studies, checklists, and process flow charts were employed. The study focuses on the sewing department of a clothing industry in Addis Ababa, Ethiopia.

Findings

These techniques outperform conventional techniques and offer a better solution for challenging decision-making situations. Each lean waste’s FMEA criteria, such as severity, occurrence, and detectability, were examined. A pairwise comparison revealed that defect has a larger effect than other lean wastes. Defects were mostly caused by inadequate operator training. To minimize lean waste, prioritizing their causes is crucial.

Research limitations/implications

The research focuses on a case company and the result could not be generalized for the whole industry.

Practical implications

The study used quantitative approaches to quantify and prioritize the causes of lean waste in the garment industry and provides insight for industrialists to focus on the waste causes to improve their quality performance.

Originality/value

The methodology of integrating FMEA with FAHP and FTOPSIS was the new contribution to have a better solution to decision variables by considering the severity, occurrence, and detectability of the causes of wastes. The data collection approach was based on experts’ focus group discussion to rate the main causes of defects which could provide optimal values of defect cause prioritization.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 5 June 2023

Rishabh Rathore, Jitesh Thakkar and J.K. Jha

This paper investigates the overall system risk for a foodgrains supply chain capturing the interrelationship among the risk factors and the effect of risk mitigation strategies.

Abstract

Purpose

This paper investigates the overall system risk for a foodgrains supply chain capturing the interrelationship among the risk factors and the effect of risk mitigation strategies.

Design/methodology/approach

This paper first calculates the weight of risk factors using an integrated approach of failure mode, effects analysis and fuzzy VIKOR technique. Next, the weights are utilized as input for the weighted fuzzy Petri-net (WFPN) approach to calculate the system risk.

Findings

Two different WFPN models are developed based on the relationships among the risk factors, and both models demonstrate a higher risk value for the overall system.

Originality/value

The proposed methodology will help practitioners or managers understand the complexity involved in the system by capturing the interrelationship behaviour. This study also considers the concurrent effect of risk mitigation strategies for calculating the overall system risk, which helps to improve the system’s performance.

Details

International Journal of Productivity and Performance Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 8 March 2024

Satyajit Mahato and Supriyo Roy

Managing project completion within the stipulated time is significant to all firms' sustainability. Especially for software start-up firms, it is of utmost importance. For any…

Abstract

Purpose

Managing project completion within the stipulated time is significant to all firms' sustainability. Especially for software start-up firms, it is of utmost importance. For any schedule variation, these firms must spend 25 to 40 percent of the development cost reworking quality defects. Significantly, the existing literature does not support defect rework opportunities under quality aspects among Indian IT start-ups. The present study aims to fill this niche by proposing a unique mathematical model of the defect rework aligned with the Six Sigma quality approach.

Design/methodology/approach

An optimization model was formulated, comprising the two objectives: rework “time” and rework “cost.” A case study was developed in relevance, and for the model solution, we used MATLAB and an elitist, Nondominated Sorting Genetic Algorithm (NSGA-II).

Findings

The output of the proposed approach reduced the “time” by 31 percent at a minimum “cost”. The derived “Pareto Optimal” front can be used to estimate the “cost” for a pre-determined rework “time” and vice versa, thus adding value to the existing literature.

Research limitations/implications

This work has deployed a decision tree for defect prediction, but it is often criticized for overfitting. This is one of the limitations of this paper. Apart from this, comparing the predicted defect count with other prediction models hasn’t been attempted. NSGA-II has been applied to solve the optimization problem; however, the optimal results obtained have yet to be compared with other algorithms. Further study is envisaged.

Practical implications

The Pareto front provides an effective visual aid for managers to compare multiple strategies to decide the best possible rework “cost” and “time” for their projects. It is beneficial for cost-sensitive start-ups to estimate the rework “cost” and “time” to negotiate with their customers effectively.

Originality/value

This paper proposes a novel quality management framework under the Six Sigma approach, which integrates optimization of critical metrics. As part of this study, a unique mathematical model of the software defect rework process was developed (combined with the proposed framework) to obtain the optimal solution for the perennial problem of schedule slippage in the rework process of software development.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 9 February 2024

Xiaoqing Zhang, Genliang Xiong, Peng Yin, Yanfeng Gao and Yan Feng

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous…

Abstract

Purpose

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous massage path planning and stable interaction control.

Design/methodology/approach

First, back region extraction and acupoint recognition based on deep learning is proposed, which provides a basis for determining the working area and path points of the robot. Second, to realize the standard approach and movement trajectory of the expert massage, 3D reconstruction and path planning of the massage area are performed, and normal vectors are calculated to control the normal orientation of robot-end. Finally, to cope with the soft and hard changes of human tissue state and body movement, an adaptive force tracking control strategy is presented to compensate the uncertainty of environmental position and tissue hardness online.

Findings

Improved network model can accomplish the acupoint recognition task with a large accuracy and integrate the point cloud to generate massage trajectories adapted to the shape of the human body. Experimental results show that the adaptive force tracking control can obtain a relatively smooth force, and the error is basically within ± 0.2 N during the online experiment.

Originality/value

This paper incorporates deep learning, 3D reconstruction and impedance control, the robot can understand the shape features of the massage area and adapt its planning massage path to carry out a stable and safe force tracking control during dynamic robot–human contact.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 June 2023

Aniruddh Nain, Deepika Jain and Ashish Trivedi

This paper aims to examine and compare extant literature on the application of multi-criteria decision-making (MCDM) techniques in humanitarian operations (HOs) and humanitarian…

Abstract

Purpose

This paper aims to examine and compare extant literature on the application of multi-criteria decision-making (MCDM) techniques in humanitarian operations (HOs) and humanitarian supply chains (HSCs). It identifies the status of existing research in the field and suggests a roadmap for academicians to undertake further research in HOs and HSCs using MCDM techniques.

Design/methodology/approach

The paper systematically reviews the research on MCDM applications in HO and HSC domains from 2011 to 2022, as the field gained traction post-2004 Indian Ocean Tsunami phenomena. In the first step, an exhaustive search for journal articles is conducted using 48 keyword searches. To ensure quality, only those articles published in journals featuring in the first quartile of the Scimago Journal Ranking were selected. A total of 103 peer-reviewed articles were selected for the review and then segregated into different categories for analysis.

Findings

The paper highlights insufficient high-quality research in HOs that utilizes MCDM methods. It proposes a roadmap for scholars to enhance the research outcomes by advocating adopting mixed methods. The analysis of various studies revealed a notable absence of contextual reference. A contextual mind map specific to HOs has been developed to assist future research endeavors. This resource can guide researchers in determining the appropriate contextual framework for their studies.

Practical implications

This paper will help practitioners understand the research carried out in the field. The aspiring researchers will identify the gap in the extant research and work on future research directions.

Originality/value

To the best of the authors’ knowledge, this is the first literature review on applying MCDM in HOs and HSCs. It summarises the current status and proposes future research directions.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 4 July 2023

Shahbaz Khan, Abid Haleem and Mohd Imran Khan

The complex network structure causes several disruptions in the supply chain that make risk management essential for supply chain management including halal supply chain (HSM)…

Abstract

Purpose

The complex network structure causes several disruptions in the supply chain that make risk management essential for supply chain management including halal supply chain (HSM). During risk management, several challenges are associated with the risk assessment phase, such as incomplete and uncertain information about the system. To cater this, the authors propose a risk assessment framework that addresses the issues of uncertainty using neutrosophic theory and demonstrated the applicability of the proposed framework through the case of halal supply chain management (HSCM).

Design/methodology/approach

The proposed framework is using the capabilities of the neutrosophic number which can handle uncertain, vague and incomplete information. Initially, the risk related to the HSC is identified through a literature review and expert’s input. Further, the probability and impact of each HSM-related risk are assessed using experts’ input through linguistic terms. These linguistic values are transformed into single-value trapezoidal neutrosophic numbers (SVTNNs). Finally, the severity of each HSM-related risk is determined through the multiplication of the probability and impact of each risk and prioritised the risks based on their severity.

Findings

A comprehensive risk assessment framework is developed that could be used under uncertainty. Initially, 16 risks are identified related to the HSM. Further, the identified risks are prioritised using the severity of the risks. The high-priority risk is “raw material status”, “raw material wholesomeness” and “origin of raw material” while “information integrity” and “people integrity” are low-priority risks.

Practical implications

HSM risk can be effectively assessed through the proposed framework. The proposed framework applied neutrosophic numbers to represent real-life situations, and it could be used for other supply chains as well.

Originality/value

The proposed method is effectively addressing the issue of linguistic subjectivity, inconsistent information and uncertainty in the expert’s opinion. A case study of the HSC is adopted to illustrate the efficiency and applicability of the proposed risk framework.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 27 June 2023

Sandeep Kumar, Vikas Swarnakar, Rakesh Kumar Phanden, Dinesh Khanduja and Ayon Chakraborty

The purpose of this study is to present the systematic literature review (SLR) on Lean Six Sigma (LSS) by exploring the state of the art on growth of literature on LSS within the…

Abstract

Purpose

The purpose of this study is to present the systematic literature review (SLR) on Lean Six Sigma (LSS) by exploring the state of the art on growth of literature on LSS within the manufacturing sector, critical factors to implement LSS, the role of LSS in the manufacturing sector from an implementation and sustainability viewpoint and Industry 4.0 viewpoints while highlighting the research gaps.

Design/methodology/approach

An SLR of 2,876 published articles extracted from Scopus, WoS, Emerald Insight, IEEE Xplore, Taylor & Francis, Springer and Inderscience databases was carried out following the protocol of systematic review. In total, 154 articles published in different journals over the past 10 years were selected for quantitative and qualitative analysis which revealed a number of research gaps.

Findings

The findings of the SLR revealed the growth of literature on LSS within the manufacturing sector. The review also highlighted the most cited critical success factors, critical failure factors, performance indicators and associated tools and techniques applied during LSS implementation. The review also focused on studies related to LSS and sustainability viewpoint and LSS and Industry 4.0 viewpoints.

Practical implications

The findings of this SLR can help senior managers, practitioners and researchers to understand the current developments and future requirements to adopt LSS in manufacturing sectors from sustainability and Industry 4.0 viewpoints.

Originality/value

Academic publications in the context of the role of LSS in various research streams are sparse, and to the best of the authors’ knowledge, this paper is one of the first SLRs which explore current developments and future requirements to implement LSS from sustainability and Industry 4.0 perspective.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

1 – 10 of 10