Search results

1 – 10 of 29
Article
Publication date: 23 January 2024

Wang Zhang, Lizhe Fan, Yanbin Guo, Weihua Liu and Chao Ding

The purpose of this study is to establish a method for accurately extracting torch and seam features. This will improve the quality of narrow gap welding. An adaptive deflection…

Abstract

Purpose

The purpose of this study is to establish a method for accurately extracting torch and seam features. This will improve the quality of narrow gap welding. An adaptive deflection correction system based on passive light vision sensors was designed using the Halcon software from MVtec Germany as a platform.

Design/methodology/approach

This paper proposes an adaptive correction system for welding guns and seams divided into image calibration and feature extraction. In the image calibration method, the field of view distortion because of the position of the camera is resolved using image calibration techniques. In the feature extraction method, clear features of the weld gun and weld seam are accurately extracted after processing using algorithms such as impact filtering, subpixel (XLD), Gaussian Laplacian and sense region for the weld gun and weld seam. The gun and weld seam centers are accurately fitted using least squares. After calculating the deviation values, the error values are monitored, and error correction is achieved by programmable logic controller (PLC) control. Finally, experimental verification and analysis of the tracking errors are carried out.

Findings

The results show that the system achieves great results in dealing with camera aberrations. Weld gun features can be effectively and accurately identified. The difference between a scratch and a weld is effectively distinguished. The system accurately detects the center features of the torch and weld and controls the correction error to within 0.3mm.

Originality/value

An adaptive correction system based on a passive light vision sensor is designed which corrects the field-of-view distortion caused by the camera’s position deviation. Differences in features between scratches and welds are distinguished, and image features are effectively extracted. The final system weld error is controlled to 0.3 mm.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 December 2022

Biyanka Ekanayake, Alireza Ahmadian Fard Fini, Johnny Kwok Wai Wong and Peter Smith

Recognising the as-built state of construction elements is crucial for construction progress monitoring. Construction scholars have used computer vision-based algorithms to…

Abstract

Purpose

Recognising the as-built state of construction elements is crucial for construction progress monitoring. Construction scholars have used computer vision-based algorithms to automate this process. Robust object recognition from indoor site images has been inhibited by technical challenges related to indoor objects, lighting conditions and camera positioning. Compared with traditional machine learning algorithms, one-stage detector deep learning (DL) algorithms can prioritise the inference speed, enable real-time accurate object detection and classification. This study aims to present a DL-based approach to facilitate the as-built state recognition of indoor construction works.

Design/methodology/approach

The one-stage DL-based approach was built upon YOLO version 4 (YOLOv4) algorithm using transfer learning with few hyperparameters customised and trained in the Google Colab virtual machine. The process of framing, insulation and drywall installation of indoor partitions was selected as the as-built scenario. For training, images were captured from two indoor sites with publicly available online images.

Findings

The DL model reported a best-trained weight with a mean average precision of 92% and an average loss of 0.83. Compared to previous studies, the automation level of this study is high due to the use of fixed time-lapse cameras for data collection and zero manual intervention from the pre-processing algorithms to enhance visual quality of indoor images.

Originality/value

This study extends the application of DL models for recognising as-built state of indoor construction works upon providing training images. Presenting a workflow on training DL models in a virtual machine platform by reducing the computational complexities associated with DL models is also materialised.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 13 March 2024

Lina Gharaibeh, Kristina Eriksson and Björn Lantz

Perceived benefits of building information modelling (BIM) have been discussed for some time, but cost–benefit benchmarking has been inconsistent. The purpose of this paper is to…

Abstract

Purpose

Perceived benefits of building information modelling (BIM) have been discussed for some time, but cost–benefit benchmarking has been inconsistent. The purpose of this paper is to investigate BIM feasibility and evaluate investment worth to elucidate and develop the current understanding of BIM merit. The aim of the study is to propose a research agenda towards a more holistic perspective of BIM use incorporating quantifying investment return.

Design/methodology/approach

An in-depth examination of research patterns has been conducted to identify challenges in the assessment of the investment value and return on investment (ROI) for BIM in the construction industry. A total of 75 research articles were considered for the final literature review. An evaluation of the literature is conducted using a combination of bibliometric analysis and systematic reviews.

Findings

This study, which analysed 75 articles, unveils key findings in quantifying BIM benefits, primarily through ROI calculation. Two major research gaps are identified: the absence of a standardized BIM ROI method and insufficient exploration of intangible benefits. Research focus varies across phases, emphasizing design and construction integration and exploring post-construction phases. The study categorizes quantifiable factors, including productivity, changes and rework reduction, requests for information reduction, schedule efficiency, safety, environmental sustainability and operations and facility management. These findings offer vital insights for researchers and practitioners, enhancing understanding of ’BIM’s financial benefits and signalling areas for further exploration in construction.

Originality/value

The ’study’s outcomes offer the latest insights for researchers and practitioners to create effective approaches for quantifying ’BIM’s financial benefits. Additionally, the proposed research agenda aims to improve the current limited understanding of BIM feasibility and investment worth evaluation. Results of the study could assist practitioners in overcoming limitations associated with BIM investment and economic evaluations in the construction industry.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 December 2023

Santosh B. Rane, Gayatri J. Abhyankar, Milind Shrikant Kirkire and Rajeev Agrawal

This article aims at - exploring and prioritizing the barriers to adoption of digitization in supply chains (SCs), categorizing them into sustainability triple bottom line (STBL…

Abstract

Purpose

This article aims at - exploring and prioritizing the barriers to adoption of digitization in supply chains (SCs), categorizing them into sustainability triple bottom line (STBL) based upon their direct impact and suggesting digital technologies to address each barrier.

Design/methodology/approach

A five-phase methodology is used which consists of an exploration of 44 barriers to the adoption of digitization in SCs, analysis of 44 barriers for mean, standard deviation and Cronbach alpha based on questionnaire-based feedback of 25 experts, extraction of 10 most significant barriers through 05 experts, followed by categorization of the barriers into STBL referring to their direct impact on STBL, prioritization of ten barriers using Fuzzy Technique for Order Performance by Similarity to Ideal Solution and recommendation of digital technologies to address each barrier.

Findings

While all the barriers considered in this study significantly impede the adoption of digitization in SCs, lack of top management commitment (B1) is found to be most crucial while lack of culture toward use of information and communication technology required for digitization (B3) has minimum impact. Large investment in digital infrastructure (B6), difficulty in integration of cyber physical systems (CPSs) on varied platforms (B8) and lack of experts having knowledge of digital technologies (B2) are equally important barriers requiring more attention while adopting digitization in SCs.

Research limitations/implications

This study is mainly based on feedback from 25 seasoned experts; a wider cross section of experts will give more insight.

Practical implications

The outcomes are very significant for organizations looking to adopt digitization in their SCs. Simultaneous consideration to all the barriers becomes impractical hence prioritization of same will be useful for the SC managers to benchmark their preparedness and decide strategies for the adoption of digitization with due consideration toward the impact of barriers on STBL. The digital technologies recommended will further aid in planning the digital strategies to address each barrier.

Originality/value

A unique approach to explore, analyze, prioritize and categorize the barriers to adoption of digitization in SCs is used to provide a deeper understanding of factors deterring the same. It implies that a supportive top management along with systematic allocation of finances plays a crucial role. The importance of availability of digital experts for integrating CPSs on a single platform is also highlighted. The digital technologies recommended will further assist the organizations toward adoption of digitization in SCs with due consideration to STBL.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 29 March 2024

Pingyang Zheng, Shaohua Han, Dingqi Xue, Ling Fu and Bifeng Jiang

Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM…

Abstract

Purpose

Because of the advantages of high deposition efficiency and low manufacturing cost compared with other additive technologies, robotic wire arc additive manufacturing (WAAM) technology has been widely applied for fabricating medium- to large-scale metallic components. The additive manufacturing (AM) method is a relatively complex process, which involves the workpiece modeling, conversion of the model file, slicing, path planning and so on. Then the structure is formed by the accumulated weld bead. However, the poor forming accuracy of WAAM usually leads to severe dimensional deviation between the as-built and the predesigned structures. This paper aims to propose a visual sensing technology and deep learning–assisted WAAM method for fabricating metallic structure, to simplify the complex WAAM process and improve the forming accuracy.

Design/methodology/approach

Instead of slicing of the workpiece modeling and generating all the welding torch paths in advance of the fabricating process, this method is carried out by adding the feature point regression branch into the Yolov5 algorithm, to detect the feature point from the images of the as-built structure. The coordinates of the feature points of each deposition layer can be calculated automatically. Then the welding torch trajectory for the next deposition layer is generated based on the position of feature point.

Findings

The mean average precision score of modified YOLOv5 detector is 99.5%. Two types of overhanging structures have been fabricated by the proposed method. The center contour error between the actual and theoretical is 0.56 and 0.27 mm in width direction, and 0.43 and 0.23 mm in height direction, respectively.

Originality/value

The fabrication of circular overhanging structures without using the complicate slicing strategy, turning table or other extra support verified the possibility of the robotic WAAM system with deep learning technology.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 February 2024

Janya Chanchaichujit, Sreejith Balasubramanian and Vinaya Shukla

The purpose of this study is to identify and analyze the barriers associated with the adoption of Industry 4.0 technologies in agricultural supply chains.

120

Abstract

Purpose

The purpose of this study is to identify and analyze the barriers associated with the adoption of Industry 4.0 technologies in agricultural supply chains.

Design/methodology/approach

The study initially identified thirteen barriers by conducting a literature review and semi-structured interviews with key stakeholders. Subsequently, these barriers were validated and modeled using an integrated Fuzzy Delphi-ISM approach. Finally, MICMAC analysis was employed to categorize the barriers into distinct clusters.

Findings

The results provide considerable insights into the hierarchical structure and complex interrelationships between the barriers as well the driving and dependence power of barriers. Lack of information about technologies and lack of compatibility with traditional methods emerged as the two main barriers which directly and indirectly influence the other ones.

Research limitations/implications

The robust hybrid Fuzzy Delphi and ISM techniques used in this study can serve as a useful model and benchmark for similar studies probing the barriers to Industry 4.0 adoption. From a theoretical standpoint, this study expands the scope of institutional theory in explaining Industry 4.0 adoption barriers.

Practical implications

The study is timely for the post-COVID-19 recovery and growth of the agricultural sector. The findings are helpful for policymakers and agriculture supply chain stakeholders in devising new strategies and policy interventions to prioritize and address Industry 4.0 adoption barriers.

Originality/value

It is the first comprehensive, multi-country and multi-method empirical study to comprehensively identify and model barriers to Industry 4.0 adoption in agricultural supply chains in emerging economies.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 28 December 2023

Anthony Bagherian, Mark Gershon and Sunil Kumar

Numerous attempts at installing six sigma (SS) have faced challenges and fallen short of the desired success. Thus, it becomes vital to identify the critical factors and…

Abstract

Purpose

Numerous attempts at installing six sigma (SS) have faced challenges and fallen short of the desired success. Thus, it becomes vital to identify the critical factors and characteristics that play a pivotal role in achieving successful adoption. In this study the research has aimed to highlight that a considerable number of corporate SS initiatives, around 60%, fail primarily due to the improper incorporation of essential elements and flawed assumptions.

Design/methodology/approach

To validate the influence of critical success factors (CSFs) on SS accomplishment, the study employed a research design combining exploratory and mixed-methods approaches. A Likert-scale questionnaire was utilized, and a simple random sampling method was employed to gather data. Out of the 2,325 potential participants approached, 573 responses were received, primarily from Germany, the United Kingdom and Sweden. The analysis focused on 260 completed questionnaires and statistical methods including structural equation modeling (SEM), exploratory factor analysis (EFA) and Confirmatory Factor Analysis (CFA) were utilized for data analysis.

Findings

The study acknowledged four essential components of CSFs that are imperative for sustaining the success of SS: (1) Competence of belt System employees; (2) Project management skills; (3) Organizational economic capability and (4) Leadership commitment and engagement. These factors were identified as significant contributors to the maintenance of SS’s success.

Practical implications

The practical implications of this research imply that institutions, practitioners, and researchers can utilize the four identified factors to foster the sustainable deployment of SS initiatives. By incorporating these factors, organizations can enhance the effectiveness and longevity of their SS practices.

Originality/value

The investigation's originality lies in its contribution to assessing CSFs in SS deployment within the European automobile industry, utilizing a mixed-methods research design supplemented by descriptive statistics.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 27 November 2023

Ayodeji Emmanuel Oke, John Aliu, Samuel Bankole Oni and Oluwadamilare Olamide Ilesanmi

The purpose of this study is to investigate the obstacles to mechatronics adoption in the construction industry from a Nigerian perspective. It aims to fill the knowledge gap by…

Abstract

Purpose

The purpose of this study is to investigate the obstacles to mechatronics adoption in the construction industry from a Nigerian perspective. It aims to fill the knowledge gap by focusing on the specific challenges faced in developing countries, considering the unique contexts and constraints of the Nigerian construction industry.

Design/methodology/approach

The study used a comprehensive literature review to identify 26 obstacles to mechatronics adoption. These obstacles were used to develop a well-structured questionnaire, which was then distributed to construction professionals using Google Forms through purposive and snowball sampling techniques. The rankings obtained from the questionnaire responses were analyzed to determine the most significant obstacles.

Findings

The study revealed the top five most significant obstacles to mechatronics adoption in the Nigerian construction industry. These obstacles include high costs of operation and maintenance, resistance to adopting new technologies, a lack of standardized protocols, insufficient maintenance capabilities and a lack of government support. Factor analysis revealed five clusters of obstacles: technological-related factors, economic-related factors, capability-related factors, government-related factors and awareness-related factors.

Practical implications

Findings from this study have the potential to inform decision-making, drive policy changes and guide future research efforts aimed at promoting the widespread adoption of mechatronics technologies, ultimately leading to the transformation and improvement of the construction industry as a whole.

Originality/value

This study contributes to the field of mechatronics adoption in the construction industry by addressing the gap in research specific to developing countries such as Nigeria. By identifying and analyzing the obstacles from a Nigerian perspective, the study offers unique insights and original findings.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 26 January 2022

The-Quan Nguyen, Eric C.W. Lou and Bao Ngoc Nguyen

This paper aims to provide an integrated BIM-based approach for quantity take-off for progress payments in the context of high-rise buildings in Vietnam. It tries to find answers…

Abstract

Purpose

This paper aims to provide an integrated BIM-based approach for quantity take-off for progress payments in the context of high-rise buildings in Vietnam. It tries to find answers for the following questions: (1) When to start the QTO processes to facilitate the contract progress payments? (2) What information is required to measure the quantity of works to estimate contract progress payment (3) What are the challenges to manage (i.e. create, store, update and exploit)? What are the required information for this BIM use? and (4) How to process the information to deliver BIM-based QTO to facilitate contract progress payment?

Design/methodology/approach

The paper applied a deductive approach and expert consensus through a Delphi procedure to adapt to current innovation around BIM-based QTO. Starting with a literature review, it then discusses current practices in BIM-based QTO in general and high-rise building projects in particular. Challenges were compiled from the previous studies for references for BIM-based QTO to facilitate contract progress payment for high-rise building projects in Vietnam. A framework was developed considering a standard information management process throughout the construction lifecycle, when the BIM use of this study is delivered. The framework was validated with Delphi technique.

Findings

Four major challenges for BIM-based QTO discovered: new types of information required for the BIM model, changes and updates as projects progress, low interoperability between BIM model and estimation software, potentiality of low productivity and accuracy in data entry. Required information for QTO to facilitate progress payments in high-rise building projects include Object Geometric/Appearance Information, Structural Components' Definition and Contextual Information. Trade-offs between “Speed – Level of Detail–Applicable Breadth” and “Quality – Productivity” are proposed to consider the information amount to input at a time when creating/updating BIM objects. Interoperability check needed for creating, authoring/updating processing the BIM model's objects.

Research limitations/implications

This paper is not flawless. The first limitation lies in that the theoretical framework was established only based on desk research and small number of expert judgment. Further primary data collection would be needed to determine exactly how the framework underlies widespread practices. Secondly, this study only discussed the quantity take-off specifically for contract progress payment, but not for other purposes or broader BIM uses. Further research in this field would be of great help in developing a standard protocol for automatic quantity surveying system in Vietnam.

Originality/value

A new theoretical framework for BIM-based QTO validated with Delphi technique to facilitate progress payments for high-rise building projects, considering all information management stages and the phases of information development in the project lifecycle. The framework identified four types of information required for this QTO, detailed considerations for strategies (Library Objects Development, BIM Objects Information Declaration, BIM-based QTO) for better managing the information for this BIM use. Two trade-offs of “Speed – LOD–Applicable Breadth” and “Quality – Productivity” have been proposed for facilitating the strategies and also for enhancing the total efficiency and effectiveness of the QTO process.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 25 August 2023

Yaqi Zhao, Shengyue Hao, Zhen Chen, Xia Zhou, Lin Zhang and Zhaoyang Guo

Limited use of Internet of Things (IoT) technology on construction sites has restricted its value in the construction industry. To propel its widespread application, this paper…

Abstract

Purpose

Limited use of Internet of Things (IoT) technology on construction sites has restricted its value in the construction industry. To propel its widespread application, this paper explores the influencing factors and action paths of construction companies' IoT technology adoption behavior.

Design/methodology/approach

First, literature research, technology adoption theories, and semi-structured expert interviews were employed to build the adoption model. Second, a questionnaire survey was conducted among Chinese construction contractors to collect empirical data. Third, the structural equation model method and regression analysis were used to test the adoption model. Finally, the findings were further validated with interviews, case studies, and field observations.

Findings

External environmental pressure (EEP), perceived benefit (PB), top management support (TMS), company resource readiness (CRR), adoption intention (AI), and perceived compatibility (PCA) have a direct positive impact on adoption behavior (AB). In contrast, perceived cost (PC) and perceived complexity (PCL) exert a direct negative impact on AB. The EEP, PB, and PC are critical factors affecting AB, whereas AI is strongly affected by CRR and TMS. Besides, AI plays a part mediating role in the relationship between seven factors and AB. Company size and nature positively moderate AI's positive effect on AB.

Originality/value

This paper contributes to the knowledge of IoT technology adoption behavior in the construction sector by applying the technology adoption theories. Exploring the implementation barriers and drivers of IoT technology in construction sites from the perspective of organizational technology adoption behavior and introducing moderating variables to explain adoption behavior are innovations of this paper. The findings can help professionals better understand the IoT technology adoption barriers and enhance construction companies' adoption awareness, demand, and ability. This work also provides a reference for understanding the impact mechanism of the adoption behavior of other innovative technologies in construction.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 29