Search results

1 – 10 of 11
Article
Publication date: 3 May 2013

B.J. Gireesha, A.J. Chamkha, S. Manjunatha and C.S. Bagewadi

The purpose of this paper is to study the problem of two‐dimensional unsteady mixed convective flow a dusty fluid over a stretching sheet in the presence of thermal radiation and…

Abstract

Purpose

The purpose of this paper is to study the problem of two‐dimensional unsteady mixed convective flow a dusty fluid over a stretching sheet in the presence of thermal radiation and space‐dependent heat source/sink.

Design/methodology/approach

The equations governing the fluid flow and temperature fields for both the fluid and dust phases are reduced to coupled non‐linear ordinary differential equations by using a suitable set of similarity transformations. Numerical solutions of the resulting equations are obtained using the well known RKF45 method.

Findings

The numerical results are benchmarked with previously published studies and found to be in excellent agreement. Finally, the effects of the pertinent parameters which are of physical and engineering interest on the flow and heat transfer characteristics are presented graphically and in tabulated form.

Originality/value

The problem is relatively original as the dusty fluid works for this type of problem are lacking.

Article
Publication date: 9 May 2020

S. Manjunatha, B. Ammani Kuttan, G.K. Ramesh, B.J. Gireesha and Emad H. Aly

The purpose of this paper is to discuss the 3D micropolar hybrid (Ag-CuO/H2O) nanofluid past rapid moving surface, where porous medium has been considered.

Abstract

Purpose

The purpose of this paper is to discuss the 3D micropolar hybrid (Ag-CuO/H2O) nanofluid past rapid moving surface, where porous medium has been considered.

Design/methodology/approach

The model of problem was represented by highly partial differential equations which were deduced by using suitable approximations (boundary layer). Then, the governing model was converted into five combined ordinary differential equations applying proper similarity transformations. Therefore, the eminent iterative Runge–Kutta–Fehlberg method (RKF45) has been applied to solve the resulting equations.

Findings

Higher values of vortex viscosity, spin gradient viscosity and micro-inertia density parameters are reduced in horizontal direction, whereas opposite behaviour is noticed for vertical direction.

Originality/value

The work has not been done in the area of hybrid micropolar nanofluid. Hence, this article culminates to probe how to improve the thermal conduction and fluid flow in 3D boundary layer flow of micropolar mixture of nanoparticles driven by rapidly moving plate with convective boundary condition.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 August 2022

G.K. Ramesh, J.K. Madhukesh, Emad H. Aly and Ioan Pop

The purpose of this paper is to study the steady biomagnetic hybrid nanofluid (HNF) of oxytactic microorganisms taking place over a thin needle with a magnetic field using the…

Abstract

Purpose

The purpose of this paper is to study the steady biomagnetic hybrid nanofluid (HNF) of oxytactic microorganisms taking place over a thin needle with a magnetic field using the modified Buongiorno’s nanoliquid model.

Design/methodology/approach

On applying the appropriate similarity transformations, the governing partial differential equations were transformed into a set of ordinary differential equations. These equations have been then solved numerically using Runge–Kutta–Fehlberg method of fourth–fifth order programming in MAPLE software. Features of the velocity profiles, temperature distribution, reduced skin friction coefficient, reduced Nusselt number and microorganisms’ flux, for different values of the governing parameters were analyzed and discussed.

Findings

It was observed that as the needle thickness and solid volume fraction increase, the temperature rises, but the velocity field decreases. For a higher Peclet number, the motile microorganism curve increases, and for a higher Schmidt number, the concentration curve rises.

Originality/value

On applying the modified Buongiorno’s model, the present results are original and new for the study of HNF flow and heat transfer past a permeable thin needle.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 June 2016

Md. Jashim Uddin, O. Anwar Bég and Izani Md. Ismail

The purpose of this paper is to study two-dimensional nonlinear radiative-convective, steady-state boundary layer flow of non-Newtonian power-law nanofluids along a flat vertical…

Abstract

Purpose

The purpose of this paper is to study two-dimensional nonlinear radiative-convective, steady-state boundary layer flow of non-Newtonian power-law nanofluids along a flat vertical plate in a saturated porous medium taking into account thermal and mass convective boundary conditions numerically.

Design/methodology/approach

The governing equations are reduced to a set of coupled nonlinear ordinary differential equations with relevant boundary conditions. The transformed equations are then solved using the Runge-Kutta-Fehlberg fourth-fifth order numerical method with Maple 17 and Adomian decomposition method (ADM) in Mathematica.

Findings

The transformed equations are controlled by the parameter: power-law exponent, n; temperature ratio, Tr; Rosseland radiation-conduction, R; conduction-convection, Nc; and diffusion-convection, Nd. Temperature and nanoparticle concentration is enhanced with convection-diffusion parameter as are temperatures. Velocities are depressed with greater power-law rheological index whereas temperatures are elevated. Increasing thermal radiation flux accelerate the flow but to strongly heat the boundary layer. Very good correlation of the Maple solutions with previous stationary free stream and ADM solutions for a moving free stream, are obtained.

Practical implications

The study is relevant to high temperature nano-polymer manufacturing systems.

Originality/value

Lie symmetry group is used for the first time to transform the governing equations into a set of coupled nonlinear ordinary differential equations with relevant boundary conditions. The study is relevant to high temperature nano-polymer manufacturing systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 August 2020

Elaine Lim, Tze Cheng Kueh and Yew Mun Hung

The present study aims to investigate the inverse-thermocapillary effect in an evaporating thin liquid film of self-rewetting fluid, which is a dilute aqueous solution (DAS) of…

Abstract

Purpose

The present study aims to investigate the inverse-thermocapillary effect in an evaporating thin liquid film of self-rewetting fluid, which is a dilute aqueous solution (DAS) of long-chain alcohol.

Design/methodology/approach

A long-wave evolution model modified for self-rewetting fluids is used to study the inverse thermocapillary characteristics of an evaporating thin liquid film. The flow attributed to the inverse thermocapillary action is manifested through the streamline plots and the evaporative heat transfer characteristics are quantified and analyzed.

Findings

The thermocapillary flow induced by the negative surface tension gradient drives the liquid from a low-surface-tension (high temperature) region to a high-surface-tension (low temperature) region, retarding the liquid circulation and the evaporation strength. The positive surface tension gradients of self-rewetting fluids induce inverse-thermocapillary flow. The results of different working fluids, namely, water, heptanol and DAS of heptanol, are examined and compared. The thermocapillary characteristic of a working fluid is significantly affected by the sign of the surface tension gradient and the inverse effect is profound at a high excess temperature. The inverse thermocapillary effect significantly enhances evaporation rates.

Originality/value

The current investigation on the inverse thermocapillary effect in a self-rewetting evaporating thin film liquid has not been attempted previously. This study provides insights on the hydrodynamic and thermal characteristics of thermocapillary evaporation of self-rewetting liquid, which give rise to significant thermal enhancement of the microscale phase-change heat transfer devices.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 September 2015

Sadia Siddiqa, M. Anwar Hossain and Suvash C Saha

The purpose of this paper is to conduct a detailed investigation of the two-dimensional natural convection flow of a dusty fluid. Therefore, the incompressible boundary layer flow…

Abstract

Purpose

The purpose of this paper is to conduct a detailed investigation of the two-dimensional natural convection flow of a dusty fluid. Therefore, the incompressible boundary layer flow of a two-phase particulate suspension is investigated numerically over a semi-infinite vertical flat plate. Comprehensive flow formations of the gas and particle phases are given in the boundary layer region. Primitive variable formulation is employed to convert the nondimensional governing equations into the non-conserved form. Three important two-phase mechanisms are discussed, namely, water-metal mixture, oil-metal mixture and air-metal mixture.

Design/methodology/approach

The full coupled nonlinear system of equations is solved using implicit two point finite difference method along the whole length of the plate.

Findings

The authors have presented numerical solution of the dusty boundary layer problem. Solutions obtained are depicted through the characteristic quantities, such as, wall shear stress coefficient, wall heat transfer coefficient, velocity distribution and temperature distribution for both phases. Results are interpreted for wide range of Prandtl number Pr (0.005-1,000.0). It is observed that thin boundary layer structures can be formed when mass concentration parameter or Prandtl number (e.g. oil-metal particle mixture) are high.

Originality/value

The results of the study may be of some interest to the researchers of the field of chemical engineers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2017

B.J. Gireesha, M. Archana, Prasannakumara B.C., R.S. Reddy Gorla and Oluwole Daniel Makinde

This paper aims to deal with the study of heat and mass transfer on double-diffusive three-dimensional hydromagnetic boundary layer flow of an electrically conducting Casson…

Abstract

Purpose

This paper aims to deal with the study of heat and mass transfer on double-diffusive three-dimensional hydromagnetic boundary layer flow of an electrically conducting Casson nanofluid over a stretching surface. The combined effects of nonlinear thermal radiation, magnetic field, buoyancy forces, thermophoresis and Brownian motion are taken into consideration with convective boundary conditions.

Design/methodology/approach

Similarity transformations are used to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations were numerically solved using Runge–Kutta–Fehlberg fourth-fifth-order method along with shooting technique.

Findings

The impact of several existing physical parameters such as Casson parameter, mixed convection parameter, regular buoyancy ratio parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, temperature ratio parameter on velocity, temperature, solutal and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that the solutal component increases for Dufour Lewis number, whereas it decreases for nanofluid Lewis number. Moreover, velocity profiles decrease for Casson parameter, while the Nusselt number increases for Biot number, radiation and temperature ratio parameter.

Originality/value

This paper is a new work related to three-dimensional double-diffusive flow of Casson nanofluid with buoyancy and nonlinear thermal radiation effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 November 2018

K. Ramesh and Sartaj Ahmad Eytoo

The purpose of this paper is to investigate the three fundamental flows (namely, both the plates moving in opposite directions, the lower plate is moving and other is at rest, and…

Abstract

Purpose

The purpose of this paper is to investigate the three fundamental flows (namely, both the plates moving in opposite directions, the lower plate is moving and other is at rest, and both the plates moving in the direction of flow) of the Ree-Eyring fluid between infinitely parallel plates with the effects of magnetic field, porous medium, heat transfer, radiation and slip boundary conditions. Moreover, the intention of the study is to examine the effect of different physical parameters on the fluid flow.

Design/methodology/approach

The mathematical modeling is performed on the basis of law of conservation of mass, momentum and energy equation. The modeling of the present problem is considered in Cartesian coordinate system. The governing equations are non-dimensionalized using appropriate dimensionless quantities in all the mentioned cases. The closed-form solutions are presented for the velocity and temperature profiles.

Findings

The graphical results are presented for the velocity and temperature distributions with the pertinent parameters of interest. It is observed from the present results that the velocity is a decreasing function of Hartmann number. Temperature increases with the increase of Ree-Eyring fluid parameter, radiation parameter and temperature slip parameter.

Originality/value

First time in the literature, the authors obtained closed-form solutions for the fundamental flows of Ree-Erying fluid between infinitely parallel plates with the effects of magnetic field, porous medium, heat transfer, radiation and slip boundary conditions. Moreover, the results of this paper are new and original.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 September 2017

M. Ravisha, I.S. Shivakumara and Gangadhara Reddy R.

The simultaneous effects of local thermal non-equilibrium (LTNE) and vertical heterogeneity in permeability on the onset of ferromagnetic convection in a Brinkman porous medium…

Abstract

Purpose

The simultaneous effects of local thermal non-equilibrium (LTNE) and vertical heterogeneity in permeability on the onset of ferromagnetic convection in a Brinkman porous medium are analyzed in the presence of a uniform vertical magnetic field. The eigenvalue problem is solved numerically using shooting method for isothermal rigid-ferromagnetic boundaries for various forms of vertically stratified permeability function Γ(z). The effect of vertically stratified permeability is found to either hasten or delay the onset of ferromagnetic convection. The deviation in the critical Rayleigh number between different forms of Γ(z) is found to be not so significant with an increase in the Darcy number. It is observed that the general quadratic variation of Γ(z) has more destabilizing effect on the system when compared to the constant permeability porous medium case. Besides, the influence of LTNE and magnetic parameters on the criterion for the onset of ferromagnetic convection has been assessed in detail. The paper aims to discuss these issues.

Design/methodology/approach

Ferroconvection in a porous medium has been analyzed considering heterogeneity in the permeability of the porous medium. The resulting eigenvalue problem has been solved numerically using shooting method as well as Galerkin method for realistic boundary conditions.

Findings

The novelty of the present study lies in understanding the effect of heterogeneity in the permeability of the porous medium on control of ferroconvection in a porous medium. In analyzing the problem, realistic boundary conditions are considered and the resulting eigenvalue problem is solved numerically using shooting method as well as Galerkin method.

Originality/value

Control of ferroconvection in a porous medium is an important feature in heat transfer-related problems and many mechanisms are being used to understand this aspect in the literature. The novelty of the present study lies in recognizing the effect of heterogeneity in the permeability of the porous medium on control of ferroconvection. This fact has been analyzed in detail for various forms of heterogeneity functions using numerical techniques by considering realistic boundary conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 September 2022

Feda Abdalla Zahor, Reema Jain, Ahmada Omar Ali and Verdiana Grace Masanja

The purpose of this paper is to review previous research studies on mathematical models for entropy generation in the magnetohydrodynamics (MHD) flow of nanofluids. In addition…

Abstract

Purpose

The purpose of this paper is to review previous research studies on mathematical models for entropy generation in the magnetohydrodynamics (MHD) flow of nanofluids. In addition, the influence of various parameters on the velocity profiles, temperature profiles and entropy generation was studied. Furthermore, the numerical methods used to solve the model equations were summarized. The underlying purpose was to understand the research gap and develop a research agenda.

Design/methodology/approach

This paper reviews 141 journal articles published between 2010 and 2022 on topics related to mathematical models used to assess the impacts of various parameters on the entropy generation, heat transfer and velocity of the MHD flow of nanofluids.

Findings

This review clarifies the application of entropy generation mathematical models, identifies areas for future research and provides necessary information for future research in the development of efficient thermodynamic systems. It is hoped that this review paper can provide a basis for further research on the irreversibility of nanofluids flowing through different channels in the development of efficient thermodynamic systems.

Originality/value

Entropy generation analysis and minimization constitute effective approaches for improving the performance of thermodynamic systems. A comprehensive review of the effects of various parameters on entropy generation was performed in this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 11