Search results

1 – 10 of 153
Article
Publication date: 14 June 2013

Edgardo Molina, Alpha Diallo and Zhigang Zhu

The purpose of this paper is to propose a local orientation and navigation framework based on visual features that provide location recognition, context augmentation, and viewer…

Abstract

Propose

The purpose of this paper is to propose a local orientation and navigation framework based on visual features that provide location recognition, context augmentation, and viewer localization information to a blind or low‐vision user.

Design/methodology/approach

The authors consider three types of “visual noun” features: signage, visual‐text, and visual‐icons that are proposed as a low‐cost method for augmenting environments. These are used in combination with an RGB‐D sensor and a simplified SLAM algorithm to develop a framework for navigation assistance suitable for the blind and low‐vision users.

Findings

It was found that signage detection cannot only help a blind user to find a location, but can also be used to give accurate orientation and location information to guide the user navigating a complex environment. The combination of visual nouns for orientation and RGB‐D sensing for traversable path finding can be one of the cost‐effective solutions for navigation assistance for blind and low‐vision users.

Research limitations/implications

This is the first step for a new approach in self‐localization and local navigation of a blind user using both signs and 3D data. The approach is meant to be cost‐effective but it only works in man‐made scenes where a lot of signs exist or can be placed and are relatively permanent in their appearances and locations.

Social implications

Based on 2012 World Health Organization, 285 million people are visually impaired, of which 39 million are blind. This project will have a direct impact on this community.

Originality/value

Signage detection has been widely studied for assisting visually impaired people in finding locations, but this paper provides the first attempt to use visual nouns as visual features to accurately locate and orient a blind user. The combination of visual nouns with 3D data from an RGB‐D sensor is also new.

Details

Journal of Assistive Technologies, vol. 7 no. 2
Type: Research Article
ISSN: 1754-9450

Keywords

Article
Publication date: 7 November 2019

Megha G. Krishnan, Abhilash T. Vijayan and Ashok Sankar

This paper aims to improve the performance of a two-camera robotic feedback system designed for automatic pick and place application by modifying its velocity profile during…

Abstract

Purpose

This paper aims to improve the performance of a two-camera robotic feedback system designed for automatic pick and place application by modifying its velocity profile during switching of control.

Design/methodology/approach

Cooperation of global and local vision sensors ensures visibility of the target for a two-camera robotic system. The master camera, monitoring the workspace, guides the robot such that image-based visual servoing (IBVS) by the eye-in-hand camera transcends its inherent shortcomings. A hybrid control law steers the robot until the system switches to IBVS in a region proven for its asymptotic stability and convergence through a qualitative overview of the scheme. Complementary gain factors can ensure a smooth transition in velocity during switching considering the versatility and range of the workspace.

Findings

The proposed strategy is verified through simulation studies and implemented on a 6-DOF industrial robot ABB IRB 1200 to validate the practicality of adaptive gain approach while switching in a hybrid visual feedback system. This approach can be extended to any control problem with uneven switching surfaces or coarse/fine controllers which are subjected to discrete time events.

Practical implications

In complex workspace where robots operate in parallel with other robots/humans and share workspaces, the supervisory control scheme ensures convergence. This study proves that hybrid control laws are more effective than conventional approaches in unstructured environments and visibility constraints can be overcome by the integration of multiple vision sensors.

Originality/value

The supervisory control is designed to combine the visual feedback data from eye-in-hand and eye-to-hand sensors. A gain adaptive approach smoothens the velocity characteristics of the end-effector while switching the control from master camera to the end-effector camera.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 October 2019

Ravinder Singh and Kuldeep Singh Nagla

The purpose of this research is to provide the necessarily and resourceful information regarding range sensors to select the best fit sensor for robust autonomous navigation…

Abstract

Purpose

The purpose of this research is to provide the necessarily and resourceful information regarding range sensors to select the best fit sensor for robust autonomous navigation. Autonomous navigation is an emerging segment in the field of mobile robot in which the mobile robot navigates in the environment with high level of autonomy by lacking human interactions. Sensor-based perception is a prevailing aspect in the autonomous navigation of mobile robot along with localization and path planning. Various range sensors are used to get the efficient perception of the environment, but selecting the best-fit sensor to solve the navigation problem is still a vital assignment.

Design/methodology/approach

Autonomous navigation relies on the sensory information of various sensors, and each sensor relies on various operational parameters/characteristic for the reliable functioning. A simple strategy shown in this proposed study to select the best-fit sensor based on various parameters such as environment, 2 D/3D navigation, accuracy, speed, environmental conditions, etc. for the reliable autonomous navigation of a mobile robot.

Findings

This paper provides a comparative analysis for the diverse range sensors used in mobile robotics with respect to various aspects such as accuracy, computational load, 2D/3D navigation, environmental conditions, etc. to opt the best-fit sensors for achieving robust navigation of autonomous mobile robot.

Originality/value

This paper provides a straightforward platform for the researchers to select the best range sensor for the diverse robotics application.

Article
Publication date: 19 June 2017

Michał R. Nowicki, Dominik Belter, Aleksander Kostusiak, Petr Cížek, Jan Faigl and Piotr Skrzypczyński

This paper aims to evaluate four different simultaneous localization and mapping (SLAM) systems in the context of localization of multi-legged walking robots equipped with compact…

Abstract

Purpose

This paper aims to evaluate four different simultaneous localization and mapping (SLAM) systems in the context of localization of multi-legged walking robots equipped with compact RGB-D sensors. This paper identifies problems related to in-motion data acquisition in a legged robot and evaluates the particular building blocks and concepts applied in contemporary SLAM systems against these problems. The SLAM systems are evaluated on two independent experimental set-ups, applying a well-established methodology and performance metrics.

Design/methodology/approach

Four feature-based SLAM architectures are evaluated with respect to their suitability for localization of multi-legged walking robots. The evaluation methodology is based on the computation of the absolute trajectory error (ATE) and relative pose error (RPE), which are performance metrics well-established in the robotics community. Four sequences of RGB-D frames acquired in two independent experiments using two different six-legged walking robots are used in the evaluation process.

Findings

The experiments revealed that the predominant problem characteristics of the legged robots as platforms for SLAM are the abrupt and unpredictable sensor motions, as well as oscillations and vibrations, which corrupt the images captured in-motion. The tested adaptive gait allowed the evaluated SLAM systems to reconstruct proper trajectories. The bundle adjustment-based SLAM systems produced best results, thanks to the use of a map, which enables to establish a large number of constraints for the estimated trajectory.

Research limitations/implications

The evaluation was performed using indoor mockups of terrain. Experiments in more natural and challenging environments are envisioned as part of future research.

Practical implications

The lack of accurate self-localization methods is considered as one of the most important limitations of walking robots. Thus, the evaluation of the state-of-the-art SLAM methods on legged platforms may be useful for all researchers working on walking robots’ autonomy and their use in various applications, such as search, security, agriculture and mining.

Originality/value

The main contribution lies in the integration of the state-of-the-art SLAM methods on walking robots and their thorough experimental evaluation using a well-established methodology. Moreover, a SLAM system designed especially for RGB-D sensors and real-world applications is presented in details.

Details

Industrial Robot: An International Journal, vol. 44 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 October 2015

Liangzhi Li and Nanfeng Xiao

This paper aims to propose a new view planning method which can be used to calculate the next-best-view (NBV) for multiple manipulators simultaneously and build an automated…

Abstract

Purpose

This paper aims to propose a new view planning method which can be used to calculate the next-best-view (NBV) for multiple manipulators simultaneously and build an automated three-dimensional (3D) object reconstruction system, which is based on the proposed method and can adapt to various industrial applications.

Design/methodology/approach

The entire 3D space is encoded with octree, which marks the voxels with different tags. A set of candidate viewpoints is generated, filtered and evaluated. The viewpoint with the highest score is selected as the NBV.

Findings

The proposed method is able to make the multiple manipulators, equipped with “eye-in-hand” RGB-D sensors, work together to accelerate the object reconstruction process.

Originality/value

Compared to the existed approaches, the proposed method in this paper is fast, computationally efficient, has low memory cost and can be used in actual industrial productions where the multiple different manipulators exist. And, more notably, a new algorithm is designed to speed up the generation and filtration of the candidate viewpoints, which can guarantee both speed and quality.

Details

Industrial Robot: An International Journal, vol. 42 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 August 2017

Shenglan Liu, Muxin Sun, Xiaodong Huang, Wei Wang and Feilong Wang

Robot vision is a fundamental device for human–robot interaction and robot complex tasks. In this paper, the authors aim to use Kinect and propose a feature graph fusion (FGF) for…

Abstract

Purpose

Robot vision is a fundamental device for human–robot interaction and robot complex tasks. In this paper, the authors aim to use Kinect and propose a feature graph fusion (FGF) for robot recognition.

Design/methodology/approach

The feature fusion utilizes red green blue (RGB) and depth information to construct fused feature from Kinect. FGF involves multi-Jaccard similarity to compute a robust graph and word embedding method to enhance the recognition results.

Findings

The authors also collect DUT RGB-Depth (RGB-D) face data set and a benchmark data set to evaluate the effectiveness and efficiency of this method. The experimental results illustrate that FGF is robust and effective to face and object data sets in robot applications.

Originality/value

The authors first utilize Jaccard similarity to construct a graph of RGB and depth images, which indicates the similarity of pair-wise images. Then, fusion feature of RGB and depth images can be computed by the Extended Jaccard Graph using word embedding method. The FGF can get better performance and efficiency in RGB-D sensor for robots.

Details

Assembly Automation, vol. 37 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 12 November 2019

John Oyekan, Axel Fischer, Windo Hutabarat, Christopher Turner and Ashutosh Tiwari

The purpose of this paper is to explore the role that computer vision can play within new industrial paradigms such as Industry 4.0 and in particular to support production line…

Abstract

Purpose

The purpose of this paper is to explore the role that computer vision can play within new industrial paradigms such as Industry 4.0 and in particular to support production line improvements to achieve flexible manufacturing. As Industry 4.0 requires “big data”, it is accepted that computer vision could be one of the tools for its capture and efficient analysis. RGB-D data gathered from real-time machine vision systems such as Kinect ® can be processed using computer vision techniques.

Design/methodology/approach

This research exploits RGB-D cameras such as Kinect® to investigate the feasibility of using computer vision techniques to track the progress of a manual assembly task on a production line. Several techniques to track the progress of a manual assembly task are presented. The use of CAD model files to track the manufacturing tasks is also outlined.

Findings

This research has found that RGB-D cameras can be suitable for object recognition within an industrial environment if a number of constraints are considered or different devices/techniques combined. Furthermore, through the use of a HMM inspired state-based workflow, the algorithm presented in this paper is computationally tractable.

Originality/value

Processing of data from robust and cheap real-time machine vision systems could bring increased understanding of production line features. In addition, new techniques that enable the progress tracking of manual assembly sequences may be defined through the further analysis of such visual data. The approaches explored within this paper make a contribution to the utilisation of visual information “big data” sets for more efficient and automated production.

Details

Assembly Automation, vol. 40 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 June 2023

Qamar Ul Islam, Haidi Ibrahim, Pan Kok Chin, Kevin Lim and Mohd Zaid Abdullah

Many popular simultaneous localization and mapping (SLAM) techniques have low accuracy, especially when localizing environments containing dynamically moving objects since their…

Abstract

Purpose

Many popular simultaneous localization and mapping (SLAM) techniques have low accuracy, especially when localizing environments containing dynamically moving objects since their presence can potentially cause inaccurate data associations. To address this issue, the proposed FADM-SLAM system aims to improve the accuracy of SLAM techniques in environments containing dynamically moving objects. It uses a pipeline of feature-based approaches accompanied by sparse optical flow and multi-view geometry as constraints to achieve this goal.

Design/methodology/approach

FADM-SLAM, which works with monocular, stereo and RGB-D sensors, combines an instance segmentation network incorporating an intelligent motion detection strategy (iM) with an optical flow technique to improve location accuracy. The proposed AS-SLAM system comprises four principal modules, which are the optical flow mask and iM, the ego motion estimation, dynamic point detection and the feature-based extraction framework.

Findings

Experiment results using the publicly available RGBD-Bonn data set indicate that FADM-SLAM outperforms established visual SLAM systems in highly dynamic conditions.

Originality/value

In summary, the first module generates the indication of dynamic objects by using the optical flow and iM with geometric-wise segmentation, which is then used by the second module to compute the starting point of a posture. The third module, meanwhile, first searches for the dynamic feature points in the environment, and second, eliminates them from further processing. An algorithm based on epipolar constraints is implemented to do this. In this way, only the static feature points are retained, which are then fed to the fourth module for extracting important features.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 23 September 2021

Wahyu Rahmaniar, W.J. Wang, Chi-Wei Ethan Chiu and Noorkholis Luthfil Luthfil Hakim

The purpose of this paper is to propose a new framework and improve a bi-directional people counting technique using an RGB-D camera to obtain accurate results with fast…

162

Abstract

Purpose

The purpose of this paper is to propose a new framework and improve a bi-directional people counting technique using an RGB-D camera to obtain accurate results with fast computation time. Therefore, it can be used in real-time applications.

Design/methodology/approach

First, image calibration is proposed to obtain the ratio and shift values between the depth and the RGB image. In the depth image, a person is detected as foreground by removing the background. Then, the region of interest (ROI) of the detected people is registered based on their location and mapped to an RGB image. Registered people are tracked in RGB images based on the channel and spatial reliability. Finally, people were counted when they crossed the line of interest (LOI) and their displacement distance was more than 2 m.

Findings

It was found that the proposed people counting method achieves high accuracy with fast computation time to be used in PCs and embedded systems. The precision rate is 99% with a computation time of 35 frames per second (fps) using a PC and 18 fps using the NVIDIA Jetson TX2.

Practical implications

The precision rate is 99% with a computation time of 35 frames per second (fps) using a PC and 18 fps using the NVIDIA Jetson TX2.

Originality/value

The proposed method can count the number of people entering and exiting a room at the same time. If the previous systems were limited to only one to two people in a frame, this system can count many people in a frame. In addition, this system can handle some problems in people counting, such as people who are blocked by others, people moving in another direction suddenly, and people who are standing still.

Details

Sensor Review, vol. 41 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 October 2017

Robert Bogue

This paper aims to provide a technical insight into a selection of robotic people detection technologies and applications.

Abstract

Purpose

This paper aims to provide a technical insight into a selection of robotic people detection technologies and applications.

Design/methodology/approach

Following an introduction, this paper first discusses people-sensing technologies which seek to extend the capabilities of human-robot collaboration by allowing humans to operate alongside conventional, industrial robots. It then provides examples of developments in people detection and tracking in unstructured, dynamic environments. Developments in people sensing and monitoring by assistive robots are then considered and finally, brief concluding comments are drawn.

Findings

Robotic people detection technologies are the topic of an extensive research effort and are becoming increasingly important, as growing numbers of robots interact directly with humans. These are being deployed in industry, in public places and in the home. The sensing requirements vary according to the application and range from simple person detection and avoidance to human motion tracking, behaviour and safety monitoring, individual recognition and gesture sensing. Sensing technologies include cameras, lasers and ultrasonics, and low cost RGB-D cameras are having a major impact.

Originality/value

This article provides details of a range of developments involving people sensing in the important and rapidly developing field of human-robot interactions.

Details

Industrial Robot: An International Journal, vol. 44 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 153