Search results

1 – 10 of 43
Article
Publication date: 8 November 2018

Mahmood Kasravi, Amin Mahmoudi and Mohammad Reza Feylizadeh

Construction projects managers try their best for the project to go according to the plans. They always attempt to complete the projects on time and consistent with the…

Abstract

Purpose

Construction projects managers try their best for the project to go according to the plans. They always attempt to complete the projects on time and consistent with the predetermined budgets. Amid so many problems in project planning, the most critical and well-known problem is the Resource-Constrained Project Scheduling Problem (RCPSP). The purpose of this paper is to solve RCPSP using hybrid algorithm ICA/PSO.

Design/methodology/approach

Due to the existence of various forms for scheduling the problem and also the diversity of constraints and objective functions, myriad of research studies have been conducted in this realm of study. Since most of these problems are NP-hard ones, heuristic and meta-heuristic methods are used for solving these problems. In this research, a novel hybrid method which is composed of meta-heuristic methods of particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) has been used to solve RCPSP. Finally, a railway project has been examined for RCPS Problem in a real-world situation.

Findings

According to the results of the case study, ICA/PSO algorithm has better results than ICAs and PSO individually.

Practical implications

ICA/PSO algorithm could be used for solving problems in a multi-mode situation of activities or considering more constraints on the resources, such as the existence of non-renewable resources and renewable. Based on the case study in construction project, ICA/PSO algorithm has a better solution than PSO and ICA.

Originality/value

In this study, by combining PSO and ICA algorithms and creating a new hybrid algorithm, better solutions have been achieved in RCPSP. In order to validate the method, standard problems available in PSPLib library were used.

Details

Journal of Advances in Management Research, vol. 16 no. 2
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 9 May 2023

Ercan Akan

The aim of this study is to provide a holistic analysis of all possible maritime business logistics processes related to import and export shipments in a fuzzy environment through…

Abstract

Purpose

The aim of this study is to provide a holistic analysis of all possible maritime business logistics processes related to import and export shipments in a fuzzy environment through a case study of a maritime logistics company based on the as-is and to-be models within business process management (BPM).

Design/methodology/approach

The analyses considered the following perspectives: (i) in the stage of the process identification, the definition of the problem was carried out; (ii) in the stage of the process discovery, ocean department was divided into ocean export/import operation departments; ocean export/import operation were divided into freight collect/prepaid operation processes; ocean export/import logistics activity groups were broken down into sub-activities for freight collect/prepaid operation; the logistics activity groups and their sub-activities were defined; each sub-activity as either operation or documentation process group was classified; the durations of sub-activities were evaluated by decision-makers (DMs) as fuzzy sets (FSs); the monthly total jobs activities were estimated by DMs as FSs; the applied to monthly jobs activities of total shipments were estimated by DMs as FSs; the durations of each sub-activities were aggregated; the duration of the logistics activity groups and the sub-activities for per job were calculated; the cumulative workload of logistics activity groups and sub-activities were calculated; the duration of sub-activities for per job as operation or documentation departments were calculated, (iii) in the stage of the process analysis, cumulative ocean export/import workload as operation or documentation for freight collect/prepaid were calculated; duration of activity groups and sub-activities for per job as operation or documentation were calculated; cumulative workload activity groups and sub-activities as operation or documentation were calculated, (iv) in the stage of the process redesign, cumulative workload, process cycle time as operation and documentation group and required labor force were calculated; the process cycle time of the theoretical, the as-is model and the to-be model were calculated: (i) the theoretical minimum process cycle time without resource were calculated by the critical path method (CPM), (ii) the process cycle time of the as-is model perspective with the 1 person resource constraint and (iii) the process cycle time of the to-be model perspective with the 2-person resource constraint were calculated by the resource constrained project scheduling problem (RCPSP) method.

Findings

The methodology for analyzing the ocean department operation process was successfully implemented in a real-life case study. It is observed that the results of the to-be model can be applicable for the company. The BPM-proposed methodology is applicable for the maritime logistics industry in the present study; however, it can be applied to other companies in maritime logistics as well as other industries.

Originality/value

This study contributes to research using BPM methodology in maritime logistics. This is the first study the logistics process analyses were carried out in terms of including all operation processes for a company. All processes were analyzed by using BPM methodology in maritime logistics. This study demonstrated the application of the BPM as-is and to-be models to maritime logistics. The as-is and the to-be models of the BPM methodology were applied in maritime logistics.

Research implications

This methodology applied in this study can enable organizations operating in the time-urgent maritime logistics sector to manage their logistics processes more efficiently, increase customer satisfaction, reduce the risks of customer loss due to poor operational performance and increase profits in the long term. Through the use of these methodologies utilizing FSs, the CPM and the RCPSP methods, this study is expected to make contributions to the BPM literature and provide original insights into the field. Furthermore, this study will undertake a comprehensive analysis of maritime logistics with respect to BPM to deliver noteworthy contributions to the maritime logistics literature and provide original perspectives into the field.

Article
Publication date: 1 November 1993

Oya Icmeli, S. Selcuk Erenguc and Christopher J. Zappe

A survey of project scheduling problems since 1973 limited to workdone specifically in the project scheduling area (although severaltechniques developed for assembly line…

2230

Abstract

A survey of project scheduling problems since 1973 limited to work done specifically in the project scheduling area (although several techniques developed for assembly line balancing and job‐shop scheduling can be applicable to project scheduling): the survey includes the work done on fundamental problems such as the resource‐constrained project scheduling problem (RCPSP); time/cost trade‐off problem (TCTP); and payment scheduling problem (PSP). Also discusses some recent research that integrates RCPSP with either TCTP or PSP, and PSP with TCTP. In spite of their practical relevance, very little work has been done on these combined problems to date. The future of the project scheduling literature appears to be developing in the direction of combining the fundamental problems and developing efficient exact and heuristic methods for the resulting problems.

Details

International Journal of Operations & Production Management, vol. 13 no. 11
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 9 January 2019

Amir Hossein Hosseinian, Vahid Baradaran and Mahdi Bashiri

The purpose of this paper is to propose a new mixed-integer formulation for the time-dependent multi-skilled resource-constrained project scheduling problem (MSRCPSP/t…

Abstract

Purpose

The purpose of this paper is to propose a new mixed-integer formulation for the time-dependent multi-skilled resource-constrained project scheduling problem (MSRCPSP/t) considering learning effect. The proposed model extends the basic form of the MSRCPSP by three concepts: workforces have different efficiencies, it is possible for workforces to improve their efficiencies by learning from more efficient workers and the availability of workforces and resource requests of activities are time-dependent. To spread dexterity from more efficient workforces to others, this study has integrated the concept of diffusion maximization in social networks into the proposed model. In this respect, the diffusion of dexterity is formulated based on the linear threshold model for a network of workforces who share common skills. The proposed model is bi-objective, aiming to minimize make-span and total costs of project, simultaneously.

Design/methodology/approach

The MSRCPSP is an non-deterministic polynomial-time hard (NP-hard) problem in the strong sense. Therefore, an improved version of the non-dominated sorting genetic algorithm II (IM-NSGA-II) is developed to optimize the make-span and total costs of project, concurrently. For the proposed algorithm, this paper has designed new genetic operators that help to spread dexterity among workforces. To validate the solutions obtained by the IM-NSGA-II, four other evolutionary algorithms – the classical NSGA-II, non-dominated ranked genetic algorithm, Pareto envelope-based selection algorithm II and strength Pareto evolutionary algorithm II – are used. All algorithms are calibrated via the Taguchi method.

Findings

Comprehensive numerical tests are conducted to evaluate the performance of the IM-NSGA-II in comparison with the other four methods in terms of convergence, diversity and computational time. The computational results reveal that the IM-NSGA-II outperforms the other methods in terms of most of the metrics. Besides, a sensitivity analysis is implemented to investigate the impact of learning on objective function values. The outputs show the significant impact of learning on objective function values.

Practical implications

The proposed model and algorithm can be used for scheduling activities of small- and large-size real-world projects.

Originality/value

Based on the previous studies reviewed in this paper, one of the research gaps is the MSRCPSP with time-dependent resource capacities and requests. Therefore, this paper proposes a multi-objective model for the MSRCPSP with time-dependent resource profiles. Besides, the evaluation of learning effect on efficiency of workforces has not been studied sufficiently in the literature. In this study, the effect of learning on efficiency of workforces has been considered. In the scarce number of proposed models with learning effect, the researchers have assumed that the efficiency of workforces increases as they spend more time on performing a skill. To the best of the authors’ knowledge, the effect of learning from more efficient co-workers has not been studied in the literature of the RCPSP. Therefore, in this research, the effect of learning from more efficient co-workers has been investigated. In addition, a modified version of the NSGA-II algorithm is developed to solve the model.

Details

Journal of Modelling in Management, vol. 14 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 20 March 2023

Jiaojiao Xu and Sijun Bai

This paper aims to develop an algorithm to study the impact of dynamic resource disruption on project makespan and provide a suitable resource disruption ratio for various complex…

Abstract

Purpose

This paper aims to develop an algorithm to study the impact of dynamic resource disruption on project makespan and provide a suitable resource disruption ratio for various complex industrial and emergency projects.

Design/methodology/approach

This paper addresses the RCPSP in dynamic environments, which assumes resources will be disrupted randomly, that is, the information about resource disruption is not known in advance. To this end, a reactive scheduling model is proposed for the case of random dynamic disruptions of resources. To solve the reactive scheduling model, a hybrid genetic algorithm with a variable neighborhood search is proposed.

Findings

The results obtained on the PSLIB instances prove the performance advantage of the algorithm; through sensitivity analysis, it can be obtained, the project makespan increases exponentially as the number of disruptions increase. Furthermore, if more than 50% of the project's resources are randomly disrupted, the project makespan will be significantly impacted.

Originality/value

The paper focuses on the impact of dynamic resource disruptions on project makespan. Few studies have considered stochastic, dynamic resource uncertainty. In addition, this research proposes a reasonable scheduling algorithm for the research problem, and the conclusions drawn from the research provide decision support for project managers.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 28 February 2023

Lin-Lin Xie, Yajiao Chen, Sisi Wu, Rui-Dong Chang and Yilong Han

Project scheduling plays an essential role in the implementation of a project due to the limitation of resources in practical projects. However, the existing research tend to…

Abstract

Purpose

Project scheduling plays an essential role in the implementation of a project due to the limitation of resources in practical projects. However, the existing research tend to focus on finding suitable algorithms to solve various scheduling problems and fail to find the potential scheduling rules in these optimal or near-optimal solutions, that is, the possible intrinsic relationships between attributes related to the scheduling of activity sequences. Data mining (DM) is used to analyze and interpret data to obtain valuable information stored in large-scale data. The goal of this paper is to use DM to discover scheduling concepts and obtain a set of rules that approximate effective solutions to resource-constrained project scheduling problems. These rules do not require any search and simulation, which have extremely low time complexity and support real-time decision-making to improve planning/scheduling.

Design/methodology/approach

The resource-constrained project scheduling problem can be described as scheduling a group of interrelated activities to optimize the project completion time and other objectives while satisfying the activity priority relationship and resource constraints. This paper proposes a new approach to solve the resource-constrained project scheduling problem by combining DM technology and the genetic algorithm (GA). More specifically, the GA is used to generate various optimal project scheduling schemes, after that C4.5 decision tree (DT) is adopted to obtain valuable knowledge from these schemes for further predicting and solving new scheduling problems.

Findings

In this study, the authors use GA and DM technology to analyze and extract knowledge from a large number of scheduling schemes, and determine the scheduling rule set to minimize the completion time. In order to verify the application effect of the proposed DT classification model, the J30, J60 and J120 datasets in PSPLIB are used to test the validity of the scheduling rules. The results show that DT can readily duplicate the excellent performance of GA for scheduling problems of different scales. In addition, the DT prediction model developed in this study is applied to a high-rise residential project consisting of 117 activities. The results show that compared with the completion time obtained by GA, the DT model can realize rapid adjustment of project scheduling problem to deal with the dynamic environment interference. In a word, the data-based approach is feasible, practical and effective. It not only captures the knowledge contained in the known optimal scheduling schemes, but also helps to provide a flexible scheduling decision-making approach for project implementation.

Originality/value

This paper proposes a novel knowledge-based project scheduling approach. In previous studies, intelligent optimization algorithm is often used to solve the project scheduling problem. However, although these intelligent optimization algorithms can generate a set of effective solutions for problem instances, they are unable to explain the process of decision-making, nor can they identify the characteristics of good scheduling decisions generated by the optimization process. Moreover, their calculation is slow and complex, which is not suitable for planning and scheduling complex projects. In this study, the set of effective solutions of problem instances is taken as the training dataset of DM algorithm, and the extracted scheduling rules can provide the prediction and solution of new scheduling problems. The proposed method focuses on identifying the key parameters of a specific dynamic scheduling environment, which can not only reproduces the scheduling performance of the original algorithm well, but also has the ability to make decisions quickly under the dynamic interference construction scenario. It is helpful for project managers to implement quick decisions in response to construction emergencies, which is of great practical significance for improving the flexibility and efficiency of construction projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 May 2021

Mohammad Khalilzadeh

This study aims to develop a mathematical programming model for preemptive multi-mode resource-constrained project scheduling problems in construction with the objective of…

Abstract

Purpose

This study aims to develop a mathematical programming model for preemptive multi-mode resource-constrained project scheduling problems in construction with the objective of levelling resources considering renewable and non-renewable resources.

Design/methodology/approach

The proposed model was solved by the exact method and the genetic algorithm integrated with the solution modification procedure coded with MATLAB software. The Taguchi method was applied for setting the parameters of the genetic algorithm. Different numerical examples were used to show the validation of the proposed model and the capability of the genetic algorithm in solving large-sized problems. In addition, the sensitivity analysis of two parameters, including resource factor and order strength, was conducted to investigate their impact on computational time.

Findings

The results showed that preemptive activities obtained better results than non-preemptive activities. In addition, the validity of the genetic algorithm was evaluated by comparing its solutions to the ones of the exact methods. Although the exact method could not find the optimal solution for large-scale problems, the genetic algorithm obtained close to optimal solutions within a short computational time. Moreover, the findings demonstrated that the genetic algorithm was capable of achieving optimal solutions for small-sized problems. The proposed model assists construction project practitioners with developing a realistic project schedule to better estimate the project completion time and minimize fluctuations in resource usage during the entire project horizon.

Originality/value

There has been no study considering the interruption of multi-mode activities with fluctuations in resource usage over an entire project horizon. In this regard, fluctuations in resource consumption are an important issue that needs the attention of project planners.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 23 September 2019

Dheeraj Joshi, M.L. Mittal, Milind Kumar Sharma and Manish Kumar

The purpose of this paper is to consider one of the recent and practical extensions of the resource-constrained project scheduling problem (RCPSP) termed as the multi-skill…

Abstract

Purpose

The purpose of this paper is to consider one of the recent and practical extensions of the resource-constrained project scheduling problem (RCPSP) termed as the multi-skill resource-constrained project scheduling problem (MSRCPSP) for investigation. The objective is the minimization of the makespan or total project duration.

Design/methodology/approach

To solve this complex problem, the authors propose a teaching–learning-based optimization (TLBO) algorithm in which self-study and examination have been used as additional features to enhance its exploration and exploitation capabilities. An activity list-based encoding scheme has been modified to include the resource assignment information because of the multi-skill nature of the algorithm. In addition, a genetic algorithm (GA) is also developed in this work for the purpose of comparisons. The computational experiments are performed on 216 test instances with varying complexity and characteristics generated for the purpose.

Findings

The results obtained after computations show that the TLBO has performed significantly better than GA in terms of average percentage deviation from the critical path-based lower bound for different combinations of three parameters, namely, skill factor, network complexity and modified resource strength.

Research limitations/implications

The modified TLBO proposed in this paper can be conveniently applied to any product or service organization wherein human resources are involved in executing project activities.

Practical implications

The developed model can suitably handle resource allocation problems faced in real-life large-sized projects usually administered in software development companies, consultancy firms, R&D-based organizations, maintenance firms, big construction houses, etc. wherein human resources are involved.

Originality/value

The current work aims to propose an effective metaheuristic for a more realistic version of MSRCPSP, in which resource requirements of activities may be more than one. Moreover, to enhance the exploration and exploitation capabilities of the original TLBO, the authors use two additional concepts, namely, self-study and examination in the search process.

Details

Journal of Modelling in Management, vol. 14 no. 4
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 25 July 2019

Yifei Ren and Zhiqiang Lu

In response to the station design and flexible resources allocation of the aircraft moving assembly line, a new problem named flexible resource investment problem based on project…

Abstract

Purpose

In response to the station design and flexible resources allocation of the aircraft moving assembly line, a new problem named flexible resource investment problem based on project splitting (FRIP_PS), which minimizes total cost of resources with a given deadline are proposed in this paper.

Design/methodology/approach

First, a corresponding mathematical model considering project splitting is constructed, which needs to be simultaneously determined together with job scheduling to acquire the optimized project scheduling scheme and resource configurations. Then, an integrated nested optimization algorithm including project splitting policy and job scheduling policy is designed in this paper. In the first stage of the algorithm, a heuristic algorithm designed to get the project splitting scheme and then in the second stage a genetic algorithm with local prospective scheduling strategy is adopted to solve the flexible resource investment problem.

Findings

The heuristic algorithm of project splitting gets better project splitting results through the job shift selection strategy and meanwhile guides the algorithm of the second stage. Furthermore, the genetic algorithm solves resources allocation and job schedule through evaluation rules which can effectively solve the delayed execution of jobs because of improper allocation of flexible resources.

Originality/value

This paper represents a new extension of the resource investment problem based on aircraft moving assembly line. An effective integrated nested optimization algorithm is proposed to specify station splitting scheme, job scheduling scheme and resources allocation in the assembly lines, which is significant for practical engineering applications.

Details

Assembly Automation, vol. 39 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 13 September 2019

Qian Li, Qinshan Sun, Sha Tao and Xinglin Gao

Recently, there has been increasing focus on the development of multi-skilled workforce in project management. The purpose of this paper is to investigate a multi-skill project…

Abstract

Purpose

Recently, there has been increasing focus on the development of multi-skilled workforce in project management. The purpose of this paper is to investigate a multi-skill project scheduling problem (MSPSP), which combines project scheduling and multi-skill personnel assignment. The distinct features of skill evolution and cooperation effectiveness are considered in the problem to maximize the total project effectiveness and skill development simultaneously.

Design/methodology/approach

The Bi-objective non-linear integer programming (LIP) models are formulated for the problem using three types of skill development objective function: number of experts, total skill increment and “bottleneck” skill increment. Non-linear models are then linearized through several linearization techniques, and the ε-constraint method is used to convert the bi-objective models into single-objective models.

Findings

A construction project case is used to validate the proposed models. In comparison with models that do not consider skill evolution and cooperation effectiveness, the models proposed in this paper offer more realistic solutions and show better performance with regard to both project effectiveness and skill development.

Originality/value

This research extends the current MSPSP by considering skill evolution based on the “learning effect” as well as the influence of cooperation in an activity-based team, which are common phenomena in practice but seldom studied. LIP models formulated in this paper can be solved by any off-the-shelf optimization solver, such as CPLEX. Besides, the proposed LIP models can offer better project scheduling and personnel assignment plan, which would be of immense practical value in project management applications.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 43