Search results

1 – 10 of 15
Article
Publication date: 22 February 2024

Zejian Huang, Yihua Cao and Yanyang Wang

The sandy environment is one of the typical environments in which helicopters operate. Air-sand two-phase flow in sandy environments may be an important factor affecting flight…

Abstract

Purpose

The sandy environment is one of the typical environments in which helicopters operate. Air-sand two-phase flow in sandy environments may be an important factor affecting flight safety. Taking a typical example, this paper aims to investigate the aerodynamic and rotor trim characteristics of the UH-60 helicopter in sandy environments.

Design/methodology/approach

A computational study is conducted to simulate the air-sand flow over airfoils based on the Euler–Lagrange framework. The simulation uses the S-A turbulence model and the two-way momentum coupling methodology. Additionally, the trim characteristics of the UH-60 rotor are calculated based on the isolated rotor trim algorithm.

Findings

The simulation results show that air-sand flow significantly affects the aerodynamic characteristics of the SC1095 airfoil and the SC1094R8 airfoil. The presence of sand particles leads to a decrease in lift and an increase in drag. The calculation results of the UH-60 helicopter rotor indicate that the thrust decreases and the torque increases in the sandy environment. To maintain a steady forward flight in sandy environments, it is necessary to increase the collective pitch and the longitudinal cyclic pitch.

Originality/value

In this paper, the aerodynamic characteristics of airfoils and the trim characteristics in the air-sand flow of the UH-60 helicopter are discussed, which might be a new view to analyse the impact of sandy environments on helicopter safety and manoeuvring.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 February 2024

Jacques Abou Khalil, César Jiménez Navarro, Rami El Jeaid, Abderahmane Marouf, Rajaa El Akoury, Yannick Hoarau, Jean-François Rouchon and Marianna Braza

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to…

Abstract

Purpose

This study aims to investigate the morphing concepts able to manipulate the dynamics of the downstream unsteadiness in the separated shear layers and, in the wake, be able to modify the upstream shock–boundary layer interaction (SBLI) around an A320 morphing prototype to control these instabilities, with emphasis to the attenuation or even suppression of the transonic buffet. The modification of the aerodynamic performances according to a large parametric study carried out at Reynolds number of 4.5 × 106, Mach number of 0.78 and various angles of attack in the range of (0, 2.4)° according to two morphing concepts (travelling waves and trailing edge vibration) are discussed, and the final benefits in aerodynamic performance increase are evaluated.

Design/methodology/approach

This article examines through high fidelity (Hi-Fi) numerical simulation the effects of the trailing edge (TE) actuation and of travelling waves along a specific area of the suction side starting from practically the most downstream position of the shock wave motion according to the buffet and extending up to nearly the TE. The present paper studies through spectral analysis the coherent structures development in the near wake and the comparison of the aerodynamic forces to the non-actuated case. Thus, the physical mechanisms of the morphing leading to the increase of the lift-to-drag ratio and the drag and noise sources reduction are identified.

Findings

This study investigates the influence of shear-layer and near-wake vortices on the SBLI around an A320 aerofoil and attenuation of the related instabilities thanks to novel morphing: travelling waves generated along the suction side and trailing-edge vibration. A drag reduction of 14% and a lift-to-drag increase in the order of 8% are obtained. The morphing has shown a lift increase in the range of (1.8, 2.5)% for angle of attack of 1.8° and 2.4°, where a significant lift increase of 7.7% is obtained for the angle of incidence of 0° with a drag reduction of 3.66% yielding an aerodynamic efficiency of 11.8%.

Originality/value

This paper presents results of morphing A320 aerofoil, with a chord of 70cm and subjected to two actuation kinds, original in the state of the art at M = 0.78 and Re = 4.5 million. These Hi-Fi simulations are rather rare; a majority of existing ones concern smaller dimensions. This study showed for the first time a modified buffet mode, displaying periodic high-lift “plateaus” interspersed by shorter lift-decrease intervals. Through trailing-edge vibration, this pattern is modified towards a sinusoidal-like buffet, with a considerable amplitude decrease. Lock-in of buffet frequency to the actuation is obtained, leading to this amplitude reduction and a drastic aerodynamic performance increase.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 March 2024

Hui Zhao, Simeng Wang and Chen Lu

With the continuous development of the wind power industry, wind power plant (WPP) has become the focus of resource development within the industry. Site selection, as the initial…

Abstract

Purpose

With the continuous development of the wind power industry, wind power plant (WPP) has become the focus of resource development within the industry. Site selection, as the initial stage of WPP development, is directly related to the feasibility of construction and the future revenue of WPP. Therefore, the purpose of this paper is to study the siting of WPP and establish a framework for siting decision-making.

Design/methodology/approach

Firstly, a site selection evaluation index system is constructed from four aspects of economy, geography, environment and society using the literature review method and the Delphi method, and the weights of each index are comprehensively determined by combining the Decision-making Trial and Evaluation Laboratory (DEMATEL) and the entropy weight method (EW). Then, prospect theory and the multi-criteria compromise solution ranking method (VIKOR) are introduced to rank the potential options and determine the best site.

Findings

China is used as a case study, and the robustness and reliability of the methodology are demonstrated through sensitivity analysis, comparative analysis and ablation experiment analysis. This paper aims to provide a useful reference for WPP siting research.

Originality/value

In this paper, DEMATEL and EW are used to determine the weights of indicators, which overcome the disadvantage of single assignment. Prospect theory and VIKOR are combined to construct a decision model, which also considers the attitude of the decision-maker and the compromise solution of the decision result. For the first time, this framework is applied to WPP siting research.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 29 February 2024

Zhen Chen, Jing Liu, Chao Ma, Huawei Wu and Zhi Li

The purpose of this study is to propose a precise and standardized strategy for numerically simulating vehicle aerodynamics.

Abstract

Purpose

The purpose of this study is to propose a precise and standardized strategy for numerically simulating vehicle aerodynamics.

Design/methodology/approach

Error sources in computational fluid dynamics were analyzed. Additionally, controllable experiential and discretization errors, which significantly influence the calculated results, are expounded upon. Considering the airflow mechanism around a vehicle, the computational efficiency and accuracy of each solution strategy were compared and analyzed through numerous computational cases. Finally, the most suitable numerical strategy, including the turbulence model, simplified vehicle model, calculation domain, boundary conditions, grids and discretization scheme, was identified. Two simplified vehicle models were introduced, and relevant wind tunnel tests were performed to validate the selected strategy.

Findings

Errors in vehicle computational aerodynamics mainly stem from the unreasonable simplification of the vehicle model, calculation domain, definite solution conditions, grid strategy and discretization schemes. Using the proposed standardized numerical strategy, the simulated steady and transient aerodynamic characteristics agreed well with the experimental results.

Originality/value

Building upon the modified Low-Reynolds Number k-e model and Scale Adaptive Simulation model, to the best of the authors’ knowledge, a precise and standardized numerical simulation strategy for vehicle aerodynamics is proposed for the first time, which can be integrated into vehicle research and design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 January 2024

Inamul Hasan, Mukesh R., Radha Krishnan P., Srinath R. and Boomadevi P.

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental…

Abstract

Purpose

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental results.

Design/methodology/approach

Using numerical analysis in the forward phase of the helicopter, supercritical airfoil is compared with the conventional airfoil for the aerodynamic performance. The multiple reference frame method is used to produce the results for rotational analysis. A grid independence test was carried out, and validation was obtained using benchmark values from NASA data.

Findings

From the analysis results, a supercritical airfoil in hovering flight analysis proved that the NASA SC rotor produces 25% at 5°, 26% at 12° and 32% better thrust at 8° of collective pitch than the HH02 rotor. Helicopter performance parameters are also calculated based on momentum theory. Theoretical calculations prove that the NASA SC rotor is better than the HH02 rotor. The results of helicopter performance prove that the NASA SC rotor provides better aerodynamic efficiency than the HH02 rotor.

Originality/value

The novelty of the paper is it proved the aerodynamic performance of supercritical airfoil is performing better than the HH02 airfoil. The results are validated with the experimental values and theoretical calculations from the momentum theory.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 November 2023

Wei Li, Yuxin Huang, Leilei Ji, Lingling Ma and Ramesh Agarwal

The purpose of this study is to explore the transient characteristics of mixed-flow pumps during startup process.

Abstract

Purpose

The purpose of this study is to explore the transient characteristics of mixed-flow pumps during startup process.

Design/methodology/approach

This study uses a full-flow field transient calculation method of mixed-flow pump based on a closed-loop model.

Findings

The findings show the hydraulic losses and internal flow characteristics of the piping system during the start-up process.

Research limitations/implications

Large computational cost.

Practical implications

Improve the accuracy of current numerical simulation results in transient process of mixed-flow pump.

Originality/value

Simplify the setting of boundary conditions in the transient calculation.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 February 2024

Sam Yul Cho and Yohan Choi

Research has focused primarily on the antecedents that influence the risk taking of CEOs themselves. This study examines how an important event experienced by a CEO at a direct…

Abstract

Purpose

Research has focused primarily on the antecedents that influence the risk taking of CEOs themselves. This study examines how an important event experienced by a CEO at a direct rival firm influences a CEO's risk-taking. It also examines how prior firm performance relative to aspirations moderates the relationship.

Design/methodology/approach

In order to test the hypothesis, the authors perform an a difference-in-differences methodology.

Findings

Using a difference-in-differences methodology, we find that when a CEO wins a prestigious CEO award, competitor CEOs increase their firm risk-taking in the post-award period. The proclivity becomes stronger when their prior firm performance relative to aspirations is better. These findings suggest that a CEO winning a prominent CEO award influences competitor CEOs' risk-taking.

Originality/value

This study contributes to the literature on managerial risk-taking by highlighting that a star CEO winning a prominent award may serve as a striving aspiration and induce competitor CEOs to take risks, and that two different types of aspirations – striving and competitive aspirations – interact to influence the competitor CEOs' risk-taking.

Details

Management Decision, vol. 62 no. 3
Type: Research Article
ISSN: 0025-1747

Keywords

Book part
Publication date: 3 April 2024

Christopher McMahon and Peter Templeton

This chapter builds upon the analysis of the last chapter, as fans have to deal with the issues that arise from their team’s financial superiority. Here, we question what happens…

Abstract

This chapter builds upon the analysis of the last chapter, as fans have to deal with the issues that arise from their team’s financial superiority. Here, we question what happens when that financial superiority is accompanied by significant moral and ethical issues. Recent involvement of state actors in the ownership of English football has been evidencable and occasionally appears clear. Various reflexes and cognitive distancing occur from fandoms when football club ownership engages in practices that, according to the normative models that fans ascribe to their clubs, are mutually exclusive with the values of the fanbase and the club’s history. A common form of fan reflex often takes the form of distancing the players on the pitch from the club’s institutional structures, effectively teasing out the matchday experience from the structures that benefit from the raw emotion it generates. Another reflex is questioning why the fan should surrender their club when a morally, ethically problematic ownership model has acquired it. Here we have perhaps the greatest challenge to the normative model and, rather than negotiating that tension, as often as not the response is to try and ignore it.

Details

Contradictions in Fan Culture and Club Ownership in Contemporary English Football: The Game's Gone
Type: Book
ISBN: 978-1-83549-024-2

Keywords

Article
Publication date: 15 March 2024

Beatrice Arthur and Thomas van der Walt

The purpose of this study is to investigate the current research data management practices among researchers in Ghana and their impact on data reuse and collaborative research…

Abstract

Purpose

The purpose of this study is to investigate the current research data management practices among researchers in Ghana and their impact on data reuse and collaborative research. The study aims to identify the methods used by researchers to store and preserve their research data, as well as to determine the extent to which researchers share their data with others.

Design/methodology/approach

The study uses a mixed-method research strategy to blend qualitative and quantitative data and is conducted at two public and two private universities in Ghana.

Findings

The study revealed that researchers in Ghana currently store and preserve their research data using personal devices, such as laptops, CDs and external flash drives, rather than keeping the data in university data repositories. They also do not share their research data with others, which negatively affects collaborative research. The current practice of storing data on personal devices and not sharing data with others hinders collaborative research. The study recommends that universities in Ghana revise their research policy documents to address RDM-related issues such as data storage, data preservation, data sharing and data reuse.

Research limitations/implications

The study was conducted at two public and two private universities in Ghana, but the findings were placed in a wider context through appropriate references.

Practical implications

This study emphasises the need for sound research data management procedures to support research collaboration and data reuse in Ghana. Universities should provide incentives to academics to disclose their data to encourage data sharing and collaboration.

Social implications

The government and management of universities should consciously invest in the needed technologies and equipment to implement research data management in their universities.

Originality/value

This study looks at how researchers in Ghana manage their research data and how it affects data reuse and collaborative research.

Details

Library Management, vol. 45 no. 3/4
Type: Research Article
ISSN: 0143-5124

Keywords

1 – 10 of 15