Search results

1 – 10 of 419
Article
Publication date: 25 June 2019

Atul Kumar Ray, Vasu B., O. Anwar Beg, R.S.R. Gorla and P.V.S.N. Murthy

This paper aims to numerically investigate the two-dimensional unsteady laminar magnetohydrodynamic bioconvection flow and heat transfer of an electrically conducting…

Abstract

Purpose

This paper aims to numerically investigate the two-dimensional unsteady laminar magnetohydrodynamic bioconvection flow and heat transfer of an electrically conducting non-Newtonian Casson thin film with uniform thickness over a horizontal elastic sheet emerging from a slit in the presence of viscous dissipation. The composite effects of variable heat, mass, nanoparticle volume fraction and gyrotactic micro-organism flux are considered as is hydrodynamic (wall) slip. The Buongiorno nanoscale model is deployed which features Brownian motion and thermophoresis effects. The model studies the manufacturing fluid dynamics of smart magnetic bio-nano-polymer coatings.

Design/methodology/approach

The coupled non-linear partial differential boundary-layer equations governing the flow, heat and nano-particle and micro-organism mass transfer are reduced to a set of coupled non-dimensional equations using the appropriate transformations and then solved as an nonlinear boundary value problem with the semi-numerical Liao homotopy analysis method (HAM).Validation with a generalized differential quadrature (GDQ) numerical technique is included.

Findings

An increase in velocity slip results in a significant decrement in skin friction coefficient and Sherwood number, whereas it generates a substantial enhancement in Nusselt number and motile micro-organism number density. The computations reveal that the bioconvection Schmidt number decreases the micro-organism concentration and boundary-layer thickness which is attributable to a rise in viscous diffusion rate. Increasing bioconvection Péclet number substantially elevates the temperatures in the regime, thermal boundary layer thickness, nanoparticle concentration values and nano-particle species boundary layer thickness. The computations demonstrate the excellent versatility of HAM and GDQ in solving nonlinear multi-physical nano-bioconvection flows in thermal sciences and furthermore are relevant to application in the synthesis of smart biopolymers, microbial fuel cell coatings, etc.

Research limitations/implications

The numerical study is valid for two-dimensional, unsteady, laminar Casson film flow with nanoparticles over an elastic sheet in presence of variable heat, mass and nanoparticle volume fraction flux. The film has uniform thickness and flow is transpiring from slit which is fixed at origin.

Social implications

The study has significant applications in the manufacturing dynamics of nano-bio-polymers and the magnetic field control of materials processing systems. Furthermore, it is relevant to application in the synthesis of smart biopolymers, microbial fuel cell coatings, etc.

Originality/value

The originality of the study is to address the simultaneous effects of unsteady and variable surface fluxes on Casson nanofluid transport of gyrotactic bio-convection thin film over a stretching sheet in the presence of a transverse magnetic field. Validation of HAM with a GDQ numerical technique is included. The present numerical approaches (HAM and GDQ) offer excellent promise in simulating such multi-physical problems of interest in thermal thin film rheological fluid dynamics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1999

Rama Subba Reddy Gorla and Mahesh Kumari

A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power‐law type non‐Newtonian fluids along a vertical wedge with variable wall temperature…

Abstract

A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power‐law type non‐Newtonian fluids along a vertical wedge with variable wall temperature distribution. The mixed convection regime is divided into two regions, namely, the forced convection dominated regime and the free convection dominated regime. The two solutions are matched. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2016

M.T. Darvishi, Rama Subba Reddy Gorla, F. Khani and B.J. Gireesha

The purpose of this paper is to take the thermal analysis of natural convection and radiation heat transfer in fully wet porous fins. The wet porous fins taken for the analysis…

Abstract

Purpose

The purpose of this paper is to take the thermal analysis of natural convection and radiation heat transfer in fully wet porous fins. The wet porous fins taken for the analysis are straight fins in nature and wet. Their profile being straight helps heat transfer process of fins faster. The analysis is performed using the Darcy’s model to generate the heat equation to analyze the variation of convection and radiation parameters. The porous nature of the fins allows the flow to penetrate through the porous material of the fins leading to solid-fluid interface. The obtained non-dimensional ordinary differential equation involving three highly nonlinear terms are solved numerically by using spectral collocation method after which they are reduced into algebraic equations using Chebyshev polynomials. The study is analyzed using the mathematical analysis on heat equation and generating graphs for finding the parameters important to the heat transfer in the straight fins.

Design/methodology/approach

This study is performed using Darcy’s model to formulate heat transfer equation. To study the thermal performance, the authors considered a finite length fin with insulated tip. The effects of the wet fin parameter m2, porosity parameter Sh, radiation parameter G and temperature ratio CT on the dimensionless temperature distribution and heat transfer rate are discussed.

Findings

The results show that the base heat flow increases when the permeability of the medium is high and/or when the buoyancy effect induced in the fluid is strong.

Research limitations/implications

The analysis is made for the Darcy’s model. Non-Darcy effects will be investigated in a future work.

Practical implications

The approach is useful in enhancing heat transfer rates.

Originality/value

The results of the study will be interest to the researchers of the field of heat exchanger designers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2021

Leo Lukose and Tanmay Basak

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1996

Rama Subba Reddy Gorla, M.A. Mansour and A.A. Mohammedien

An analysis is presented to study the effects of buoyancy on forcedconvection in an axisymmetric stagnation flow of micropolar fluids over avertical cylinder with constant or…

Abstract

An analysis is presented to study the effects of buoyancy on forced convection in an axisymmetric stagnation flow of micropolar fluids over a vertical cylinder with constant or linear variation of surface heat flux conditions. Numerical solutions are given for the governing momentum, angular momentum and energy equations. Two flow regions, namely the buoyancy‐assisted and buoyancy‐opposed cases are analysed. It is observed that the wall shear stress and surface heat transfer rate increase or decrease with the buoyancy force parameter depending on the flow regime being buoyancy‐assisted or buoyancy‐opposed respectively.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2017

B.J. Gireesha, M. Archana, Prasannakumara B.C., R.S. Reddy Gorla and Oluwole Daniel Makinde

This paper aims to deal with the study of heat and mass transfer on double-diffusive three-dimensional hydromagnetic boundary layer flow of an electrically conducting Casson…

Abstract

Purpose

This paper aims to deal with the study of heat and mass transfer on double-diffusive three-dimensional hydromagnetic boundary layer flow of an electrically conducting Casson nanofluid over a stretching surface. The combined effects of nonlinear thermal radiation, magnetic field, buoyancy forces, thermophoresis and Brownian motion are taken into consideration with convective boundary conditions.

Design/methodology/approach

Similarity transformations are used to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations were numerically solved using Runge–Kutta–Fehlberg fourth-fifth-order method along with shooting technique.

Findings

The impact of several existing physical parameters such as Casson parameter, mixed convection parameter, regular buoyancy ratio parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, temperature ratio parameter on velocity, temperature, solutal and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that the solutal component increases for Dufour Lewis number, whereas it decreases for nanofluid Lewis number. Moreover, velocity profiles decrease for Casson parameter, while the Nusselt number increases for Biot number, radiation and temperature ratio parameter.

Originality/value

This paper is a new work related to three-dimensional double-diffusive flow of Casson nanofluid with buoyancy and nonlinear thermal radiation effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 August 2021

Manoj Kumar Nayak, Sachin Shaw, H. Waqas and Taseer Muhammad

The purpose of this study is to investigate the Cattaneo-Christov double diffusion, multiple slips and Darcy-Forchheimer’s effects on entropy optimized and thermally radiative…

Abstract

Purpose

The purpose of this study is to investigate the Cattaneo-Christov double diffusion, multiple slips and Darcy-Forchheimer’s effects on entropy optimized and thermally radiative flow, thermal and mass transport of hybrid nanoliquids past stretched cylinder subject to viscous dissipation and Arrhenius activation energy.

Design/methodology/approach

The presented flow problem consists of the flow, heat and mass transportation of hybrid nanofluids. This model is featured with Casson fluid model and Darcy-Forchheimer model. Heat and mass transportations are represented with Cattaneo-Christov double diffusion and viscous dissipation models. Multiple slip (velocity, thermal and solutal) mechanisms are adopted. Arrhenius activation energy is considered. For graphical and numerical data, the bvp4c scheme in MATLAB computational tool along with the shooting method is used.

Findings

Amplifying curvature parameter upgrades the fluid velocity while that of porosity parameter and velocity slip parameter whittles down it. Growing mixed convection parameter, curvature parameter, Forchheimer number, thermally stratified parameter intensifies fluid temperature. The rise in curvature parameter and porosity parameter enhances the solutal field distribution. Surface viscous drag gets controlled with the rising of the Casson parameter which justifies the consideration of the Casson model. Entropy generation number and Bejan number upgrades due to growth in diffusion parameter while that enfeeble with a hike in temperature difference parameter.

Originality/value

To the best of the authors’ knowledge, this research study is yet to be available in the existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 October 2017

Archana M., Gireesha B.J., Prasannakumara B.C. and Rama Subba Reddy Gorla

The effect of non-linear thermal radiation and variable thermo-physical properties are investigated in the Falkner-Skan flow of a Casson nanofluid in the presence of magnetic…

Abstract

Purpose

The effect of non-linear thermal radiation and variable thermo-physical properties are investigated in the Falkner-Skan flow of a Casson nanofluid in the presence of magnetic field. The paper aims to discuss this issue.

Design/methodology/approach

Selected bunch of similarity transformations are used to reduce the governing partial differential equations into a set of non-linear ordinary differential equations. The resultant equations are numerically solved using Runge-Kutta-Fehlberg fourth-fifth-order method along with shooting technique.

Findings

The velocity, temperature and concentration profiles are evaluated for several emerging physical parameters and are analyzed through graphs and tables in detail.

Research limitations/implications

This study only begins to reveal the research potential and pitfalls of research and publishing on boundary-layer flow, heat and mass transfer of Casson nanofluid past and the moving and static wedge-shaped bodies.

Originality/value

It is found that the presence of non-linear thermal radiation and variable properties has more influence in heat transfer. Furthermore, temperature profile increases as the radiation parameter increases.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 June 2023

Nirmalendu Biswas, Dipak Kumar Mandal, Nirmal K. Manna, Rama S.R. Gorla and Ali J. Chamkha

This study aims to investigate the impact of different heater geometries (flat, rectangular, semi-elliptical and triangular) on hybrid nanofluidic (Cu–Al2O3–H2O) convection in…

Abstract

Purpose

This study aims to investigate the impact of different heater geometries (flat, rectangular, semi-elliptical and triangular) on hybrid nanofluidic (Cu–Al2O3–H2O) convection in novel umbrella-shaped porous thermal systems. The system is top-cooled, and the identical heater surfaces are provided centrally at the bottom to identify the most enhanced configuration.

Design/methodology/approach

The thermal-fluid flow analysis is performed using a finite volume-based indigenous code, solving the nonlinear coupled transport equations with the Darcy number (10–5 ≤ Da ≤ 10–1), modified Rayleigh number (10 ≤ Ram ≤ 104) and Hartmann number (0 ≤ Ha ≤ 70) as the dimensionless operating parameters. The semi-implicit method for pressure linked equations algorithm is used to solve the discretized transport equations over staggered nonuniform meshes.

Findings

The study demonstrates that altering the heater surface geometry improves heat transfer by up to 224% compared with a flat surface configuration. The triangular-shaped heating surface is the most effective in enhancing both heat transfer and flow strength. In general, flow strength and heat transfer increase with rising Ram and decrease with increasing Da and Ha. The study also proposes a mathematical correlation to predict thermal characteristics by integrating all geometric and flow control variables.

Research limitations/implications

The present concept can be extended to further explore thermal performance with different curvature effects, orientations, boundary conditions, etc., numerically or experimentally.

Practical implications

The present geometry configurations can be applied in various engineering applications such as heat exchangers, crystallization, micro-electronic devices, energy storage systems, mixing processes, food processing and different biomedical systems (blood flow control, cancer treatment, medical equipment, targeted drug delivery, etc.).

Originality/value

This investigation contributes by exploring the effect of various geometric shapes of the heated bottom on the hydromagnetic convection of Cu–Al2O3–H2O hybrid nanofluid flow in a complex umbrella-shaped porous thermal system involving curved surfaces and multiphysical conditions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 1999

I.A. Hassanien, A. Shamardan, N.M. Moursy and Rama Subba Reddy Gorla

A boundary layer analysis is presented for the fluid flow and heat transfer characteristics of an incompressible micropolar fluid flowing over a plane moving surface in parallel…

2116

Abstract

A boundary layer analysis is presented for the fluid flow and heat transfer characteristics of an incompressible micropolar fluid flowing over a plane moving surface in parallel or in reverse to the free stream. The isothermal boundary condition has been treated in this paper. The resulting system of non‐linear ordinary differential equations is solved by the multi‐stage continuous Runge‐Kutta method with shooting techniques. Numerical results are obtained for the velocity, angular velocity and temperature distributions. The results indicate that micropolar fluids display drag reduction and heat transfer reduction characteristics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 419