Search results

1 – 10 of over 21000
To view the access options for this content please click here
Article
Publication date: 26 July 2018

Abhishek Kumar, Alpana Srivastava, R.P. Jeevan Kumar and Rajesh K. Tiwari

This SWOT (strengths, weaknesses, opportunities and threats) analysis was conducted to have a portrait of the competitiveness of Council of Scientific and Industrial…

Abstract

Purpose

This SWOT (strengths, weaknesses, opportunities and threats) analysis was conducted to have a portrait of the competitiveness of Council of Scientific and Industrial Research (CSIR) on the global map. Being a 75-year-old scientific organization, CSIR has raised each and every laboratory with a specific mandate and competency. It is definite that the organization would get some assistance from these points, which are briefly stated, as the institutional data reside with the laboratory only. To some extent, they can be considered on their discretion; however, the organization has raised its position to international standards, but still it can consider few areas/suggestions from this analysis. These points are suggestive and flexible in nature, which are identified and defined to elevate this organization on the globe. Scientific publications do make a difference, but on the ground, if the technologies are not viable and received by public, it makes no difference. Today, India is fortunate to have a Prime Minister like Mr Modi, who always re-evaluates the issues and solutions so that the country moves from developing to a fast-pace developed nation. It is a fact that if these research organizations reorganize themselves and prioritize the research problems, they are capable enough to become a pioneer among the world R&D industry. This paper aims to analyze the organization and suggest few points with significant findings which can assist in scaling toward excellence on a global scale.

Design/methodology/approach

On the basis of random sampling, laboratories were identified where their achievements and contribution toward industry and society were evaluated. On the basis of their setup, the organization and laboratories were evaluated to frame-out a SWOT analysis.

Findings

SWOT analysis is a deliberate technique carried out to analyze the current situation of the system and to analyze the internal and external environment, which provides and edge to the organization to sustain. The major factors assessed were manpower, machines, money and funding, and achievements and deliverables were studied.

Originality/value

The research, i.e. SWOT, is unique in nature, as it was not carried out earlier on such a scale. To some extent, the points suggested in SWOT and conclusion can be considered on their discretion; however, the organization has raised its position to international standards, but still it can consider few areas/suggestions from this analysis. These points are suggestive and flexible in nature, which are identified and defined to elevate this organization on the globe. Scientific publications do make a difference, but on the ground; if the technologies are not viable and received by public, it makes no difference. Today, India is fortunate to have a Prime Minister like Mr Modi, who always re-evaluates the issues and solutions so that the country moves from developing to a fast-pace developed nation. It is a fact that if these research organizations reorganize themselves and prioritize the research problems, they are capable enough to become a pioneer among the world R&D industry.

Details

International Journal of Innovation Science, vol. 10 no. 3
Type: Research Article
ISSN: 1757-2223

Keywords

To view the access options for this content please click here
Article
Publication date: 16 August 2011

F. Mhada, A. Hajji, R. Malhamé, A. Gharbi and R. Pellerin

This paper seeks to address the production control problem of a failure‐prone manufacturing system producing a random fraction of defective items.

Abstract

Purpose

This paper seeks to address the production control problem of a failure‐prone manufacturing system producing a random fraction of defective items.

Design/methodology/approach

A fluid model with perfectly mixed good and defective parts has been proposed. This approach combines the descriptive capacities of continuous/discrete event simulation models with analytical models, experimental design, and regression analysis. The main objective of the paper is to extend the Bielecki and Kumar theory, appearing under the title “Optimality of zero‐inventory policies for unreliable manufacturing systems”, under which the machine considered produced only good quality items, to the case where the items produced are systematically a mixture of good as well as defective items.

Findings

The paper first shows that for constant demand rates and exponential failure and repair time distributions of the machine, the Bielecki‐Kumar theory, adequately revisited, provides new and coherent results. For the more complex situation where the machine exhibits non‐exponential failure and repair time distributions, a simulation‐based approach is then considered. The usefulness of the proposed models is illustrated through numerical examples and sensitivity analysis.

Originality/value

Although the decisions taken in response to demands for productivity have a direct impact on product quality, management quality and production management have been traditionally treated as independent research fields. In response to this need, this paper is considered as a preliminary work in the intersection between quality control and production control issues.

Details

Journal of Quality in Maintenance Engineering, vol. 17 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

To view the access options for this content please click here
Book part
Publication date: 14 January 2019

Bilgehan Bozkurt

Abstract

Details

Debates in Marketing Orientation
Type: Book
ISBN: 978-1-78769-836-9

To view the access options for this content please click here
Article
Publication date: 1 March 2004

Rajesh Kumar and Verner Worm

This paper develops the argument for analyzing negotiations from an institutional perspective. A major theme of the argument being advanced in this paper is that the…

Abstract

This paper develops the argument for analyzing negotiations from an institutional perspective. A major theme of the argument being advanced in this paper is that the institutional perspective provides a more comprehensive understanding of the negotiation process in its entirety. The negotiation process can be broken down into three distinct components, namely (a) the pre‐negotiation phase; (b) the negotiating phase; and (c) the post negotiation evaluation. Each of these phases is critically influenced by a specific component or components of the institutional environment. Scott's distinction between the regulative, the normative, and the cognitive dimension of the institutional environment is drawn upon to illustrate the usefulness of this perspective. The framework is applied to assess the similarities and differences between Indian and Chinese institutional environments and their implications for negotiating processes in the countries discussed. Choosing India and China to illustrate the utility of this framework is justified by the fact that India and China are both in the process of transforming their economies, and although confronted with similar challenges, they have dealt with them in very different ways. This comparison is thus useful, not only for illustrating the value of the institutional perspective, but also for understanding the dynamics of the negotiation process in these countries.

Details

International Journal of Conflict Management, vol. 15 no. 3
Type: Research Article
ISSN: 1044-4068

Keywords

To view the access options for this content please click here
Article
Publication date: 1 April 2008

Rajneesh Kumar and B.S. Hundal

The propagation of circular crested waves in a fluid saturated incompressible porous plate is analyzed. The frequency equations, for symmetric and anti‐symmetric waves…

Abstract

The propagation of circular crested waves in a fluid saturated incompressible porous plate is analyzed. The frequency equations, for symmetric and anti‐symmetric waves, connecting the phase velocity with wave number are derived. At short wave length limits the frequency equations for symmetric and antisymmetric waves in a stress free plate reduce to Rayleigh type surface wave frequency equation and the finite thickness plate appears as a semi‐infinite medium. The results at various steps are compared with the corresponding results of classical theory and finally the variations of phase velocity, attenuation coefficient with wave number and displacements amplitudes with distance from the boundary of the plate is presented graphically and discussed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 1 March 2008

Rajneesh Kumar and Savita Devi

The Laplace and Fourier transforms have been employed to find the general solution to the fields equations in porous generalized thermoelastic medium subjected to…

Abstract

The Laplace and Fourier transforms have been employed to find the general solution to the fields equations in porous generalized thermoelastic medium subjected to thermomechanical boundary conditions permeated with various heat sources; in the transformed form. On the boundary surface, the distributed sources have been taken. To get the solution in the physical form, a numerical inversion technique has been used. The effect of continuous and moving heat sources with the thermomechanical boundary conditions; and the response of boundary sources (concentrated and continuous) with heat source varying with depth; on the normal stress component, change in volume fraction field and temperature distribution have been depicted graphically for a particular model. A particular case is also deduced from the present formulation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 10 October 2016

Rajneesh Kumar, Shaloo Devi and Veena Sharma

The purpose of this paper is to investigate the two-dimensional axisymmetric problem in a homogeneous, isotropic modified couple stress thermoelastic diffusion (TD) medium…

Abstract

Purpose

The purpose of this paper is to investigate the two-dimensional axisymmetric problem in a homogeneous, isotropic modified couple stress thermoelastic diffusion (TD) medium in the context of dual-phase-lag model.

Design/methodology/approach

The Laplace and Hankel transforms have been applied to find the general solution to the field equations. The components of displacement, stresses, temperature change and chemical potential are obtained in the transformed domain. The resulting quantities are obtained in the physical domain by using numerical inversion technique.

Findings

The components of normal stress, tangential stress, tangential couple stress, temperature change and chemical potential are obtained numerically and depicted graphically to see the effect of dual-phase-lag diffusion (DLD), dual-phase-lag heat transfer (DLT) and TD models in the absence and presence of couple stress parameter.

Originality/value

Comparisons are made in the absence and presence of couple stress DLD, DLT and TD models.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 14 August 2017

Rajneesh Kumar, Aseem Miglani and Rekha Rani

The purpose of this paper is to study the axisymmetric problem in a micropolar porous thermoelastic circular plate with dual phase lag model by employing eigenvalue…

Abstract

Purpose

The purpose of this paper is to study the axisymmetric problem in a micropolar porous thermoelastic circular plate with dual phase lag model by employing eigenvalue approach subjected to thermomechanical sources.

Design/methodology/approach

The Laplace and Hankel transforms are employed to obtain the expressions for displacements, microrotation, volume fraction field, temperature distribution and stresses in the transformed domain. A numerical inversion technique has been carried out to obtain the resulting quantities in the physical domain. Effect of porosity and phase lag on the resulting quantities has been presented graphically. The results obtained for Lord Shulman theory (L-S, 1967) and coupled theory of thermoelasticity are presented as the particular cases.

Findings

The variation of temperature distribution is similar for micropolar thermoelastic with dual (MTD) phase lag model and coupled theory of thermoelasticity. The variation is also similar for tangential couple stress for MTD and L-S theory but opposite to couple theory. The behavior of volume fraction field and tangential couple stress for L-S theory and coupled theory are observed opposite. The values of all the resulting quantities are close to each other away from the sources. The variation in tangential stress, tangential couple stress and temperature distribution is more uniform.

Originality/value

The results are original and new because the authors presented an eigenvalue approach for two dimensional problem of micropolar porous thermoelastic circular plate with dual phase lag model. A comparison of porosity, L-S theory and coupled theory of micropolar thermoelasticity is made. Such problem has applications in material science, industries and earthquake problems.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 7 November 2017

Rajneesh Kumar, Priyanka Kaushal and Rajni Sharma

The purpose of this paper is to investigate a two dimensional problem of micropolar porous thermoelastic circular plate subjected to ramp type heating.

Abstract

Purpose

The purpose of this paper is to investigate a two dimensional problem of micropolar porous thermoelastic circular plate subjected to ramp type heating.

Design/methodology/approach

Three phase lag theory of thermoelasticity has been used to formulate the problem. A numerical inversion technique is applied to obtain the result in the physical domain. The numerical values of the resulting quantities are presented graphically to show the effect of porosity and dual phase lag model. Some particular cases are also presented.

Findings

The Laplace and Hankel transforms are employed followed by the eigen value approach to obtain the components of displacements, microrotation, volume fraction field, temperature distribution and stresses in the transformed domain.

Originality/value

This paper fulfils the need to study the two-dimensional problem of micropolar porous thermoelastic circular plate subjected to ramp type heating.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 19 May 2021

Anshul Sharma, Pardeep Kumar, Hemant Kumar Vinayak, Raj Kumar Patel and Suresh Kumar Walia

This study aims to perform the experimental work on a laboratory-constructed steel truss bridge model on which hammer blows are applied for excitation. The vibration…

Abstract

Purpose

This study aims to perform the experimental work on a laboratory-constructed steel truss bridge model on which hammer blows are applied for excitation. The vibration response signals of the bridge structure are collected using sensors placed at different nodes. The different damaged states such as no damage, single damage, double damage and triple damage are introduced by cutting members of the bridge. The masked noise with recorded vibration responses generates challenge to properly analyze the health of bridge structure.

Design/methodology/approach

The analytical modal properties are obtained from finite element model (FEM) developed using SAP2000 software. The response signals are analyzed in frequency domain by power spectrum and in time-frequency domain using spectrogram and Stockwell transform. Various low pass signal-filtering techniques such as variational filter, lowpass sparse banded (AB) filter and Savitzky–Golay (SG) differentiator filter are also applied to refine vibration signals. The proposed methodology further comprises application of Hilbert transform in combination with MUSIC and ESPRIT techniques.

Findings

The outcomes of SG filter provided the denoised signals using appropriate polynomial degree with proper selected window length. However, certain unwanted frequency peaks still appeared in the outcomes of SG filter. The SG-filtered signals are further analyzed using fused methodology of Hilbert transform-ESPRIT, which shows high accuracy in identifying modal frequencies at different states of the steel truss bridge.

Originality/value

The sequence of proposed methodology for denoising vibration response signals using SG filter with Hilbert transform-ESPRIT is a novel approach. The outcomes of proposed methodology are much refined and take less computational time.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of over 21000