Search results

1 – 10 of 507
Article
Publication date: 10 May 2011

R.N. Jadhav and Vijaya Puri

The purpose of this paper is to describe the use of copper‐substituted nickel manganite thick film and bulk ceramic superstrate on Ag thick film microstrip straight resonator…

Abstract

Purpose

The purpose of this paper is to describe the use of copper‐substituted nickel manganite thick film and bulk ceramic superstrate on Ag thick film microstrip straight resonator (MSR), to modify its response and measure complex permittivity as a function of copper.

Design/methodology/approach

The glass frit free (fritless) copper‐substituted nickel manganite thick films were formulated on alumina substrate by screen printing technique from the powder synthesized by oxalic precursor method. A comparison has been made between the X band response of Ag thick film MSR due to perturbation of bulk and thick film Ni(1−x)CuxMn2O4 (0≤x≤1) ceramic. The shift has been used to measure the permittivity of the ceramic. The dielectric constants obtained by superstrate technique on Ag thick film microstrip component are comparable to those obtained from theoretical calculations.

Findings

The resonance frequency of MSR shifts towards lower frequency due to the presence of Ni(1−x)CuxMn2O4 (0≤x≤1) ceramic as superstrate. The dielectric constant of bulk and thick film match well with the theoretical values. The dielectric constant increases with copper concentration and shows reduction of power gain of MSR. The peak output (power gain) of MSR due to thick film NiMn2O4 increases by 10.19 per cent with decrease in bandwidth and increase in the quality factor with copper concentration.

Originality/value

The superstrate on Ag thick film straight resonator is an efficient tool capable of detecting the composition‐dependent changes in microwave properties of ceramic thick films. These Ni(1−x)CuxMn2O4 ceramic being thermistor materials apart from modifying the response can also be used as power sensors providing cost‐effective miniaturization.

Details

Microelectronics International, vol. 28 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 26 April 2013

S.N. Mathad, R.N. Jadhav and Vijaya Puri

The purpose of this paper was to determine the complex permittivity of bismuth strontium manganites (Bi1−xSrxMnO3) in the 8‐12 GHz range by using perturbation of Ag thick film…

Abstract

Purpose

The purpose of this paper was to determine the complex permittivity of bismuth strontium manganites (Bi1−xSrxMnO3) in the 8‐12 GHz range by using perturbation of Ag thick film microstrip ring resonator (MSRR) due to superstrate of both bulk and thick film.

Design/methodology/approach

The BSM ceramics were synthesized by simple low cost solid state reaction method and their fritless thick films were fabricated by screen printing technique on alumina substrate. A comparison has been made between the X band response of Ag thick film microstrip ring resonator due to perturbation of bulk and thick film Bi1−xSrxMnO3 ceramic.

Findings

The bulk and thick film superstrate decreases the resonance frequency of MSRR. In this technique even minor change in the properties of superstrate material changes the MSRR response. Variation of strontium content also influences microwave conductivity and penetration depth of bulk and thick films.

Originality/value

The microwave complex permittivity decreases with increase in Sr content in bismuth manganite and it is higher for bulk as compared to its thick films. The superstrate on Ag thick film microstrip ring resonator is an efficient tool capable of detecting the composition dependent changes in microwave properties of ceramic bulk and thick films.

Details

Microelectronics International, vol. 30 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 January 2015

N. Patil, N.B. Velhal, R. Pawar and Vijaya Puri

The purpose of this article is to study the effect of ferrite content on electric, magnetic and microwave properties of screen-printed y(Ni0.4Co0.2Cd0.4Fe2O4) + (1 …

Abstract

Purpose

The purpose of this article is to study the effect of ferrite content on electric, magnetic and microwave properties of screen-printed y(Ni0.4Co0.2Cd0.4Fe2O4) + (1 − y)Pb(Zr0.52Ti0.48)O3 (y = 0.0, 0.15, 0.30, 0.45, 1.0) thick films on alumina.

Design/methodology/approach

Thick films of ferrite–ferroelectric composite on alumina substrate have been delineated using screen printing technique. The structural analysis was carried out using X-ray diffraction method and scanning electron microscopy. The DC electrical resistivity was measured using the two-probe method. The magnetic measurement was carried out using a vibrating sample magnetometer. Microwave absorption was studied in the 8-18 GHz frequency range by using the vector network analyzer (N5230A). The permittivity in the 8-18 GHz frequency range was measured by using voltage standing wave ratio slotted section method.

Findings

The formation of two individual ferrite–ferroelectric phases in composite thick films was confirmed by the X-ray diffraction patterns. The scanning electron microscope morphologies show the growth of cobalt-substituted nickel cadmium ferrite grains which are well dispersed in lead zirconium titanate matrix. The DC electrical resistivity increases with increase in ferrite content and decreases with increase in temperature. The present ferrite shows ferromagnetic nature and it increases saturation magnetization and coercivity of the composite thick films. Tuning properties are observed in the Ku-band and broadband X-band microwave absorption is observed in the composite thick films. The imaginary part of permittivity increases with an increase in ferrite content, which increases microwave absorption. The real part of microwave permittivity varied from 17 to around 22 with an increase in ferrite content and it decreases with frequency. The microwave conductivity, which increases with an increase in ferrite content, reveals the loss of polaron conduction, which supports the dielectric loss in the microwave region.

Originality/value

Electric, magnetic and microwave properties of screen-printed y(Ni0.4Co0.2Cd0.4Fe2O4) + (1 − y)Pb(Zr0.52Ti0.48)O3 (y = 0.0, 0.15, 0.30, 0.45, 1.0) composite thick films on alumina substrate is reported for the first time.

Details

Microelectronics International, vol. 32 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 24 August 2023

Kyle Engel, Paul Andrew Kilmartin and Olaf Diegel

The purpose of this study is to explore the synthesis of novel conductive photo-resins to produce flexible conducting composites for use in additive manufacturing. By using direct…

Abstract

Purpose

The purpose of this study is to explore the synthesis of novel conductive photo-resins to produce flexible conducting composites for use in additive manufacturing. By using direct ink writing (DIW) additive manufacturing, this study aims to explore the fabrication of multimaterial devices with conductive and insulating components. Using digital light processing (DLP) additive manufacturing, this study aims to fabricate detailed objects with higher resolution than material extrusion 3D printing systems.

Design/methodology/approach

In this paper, several photocurable conducting resins were prepared for DIW and DLP additive manufacturing. These resins were then cured using 405 nm near UV light to create intrinsically conductive polymer (ICP) composites. The electrochemical properties of these composites were analysed, and the effect of co-monomer choice and crosslinking density was determined. These results determined a suitable resin for subsequent additive manufacture using DIW and DLP. These 3D printing techniques were used to develop flexible conducting devices of submillimetre resolution that were fabricated with unmodified, commercially available 3D printers.

Findings

Cyclic voltammetry and volume conductivity analysis of the conducting resins determined the most conductive resin formula for 3D printing. Conductive devices were fabricated using the two 3D printing techniques. A multimaterial soft conducting device was fabricated using DIW, and each conducting component was insulated from its neighbours. DLP was used to fabricate a soft conducting device with good XY resolution with a minimum feature size of 0.2 mm. All devices were prepared in unmodified commercially available 3D printers.

Practical implications

These findings have value in the development of soft robotics, artificial muscles and wearable sensors. In addition, this work highlights techniques for DIW and DLP additive manufacturing.

Originality/value

Several original conducting resin formulae were developed for use in two 3D printing systems. The resulting 3D-printed composites are soft and flexible while maintaining their conductive properties. These findings are of value to both polymer chemists and to the field of additive manufacturing.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 July 2023

Mas Irfan P. Hidayat, Azzah D. Pramata and Prima P. Airlangga

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth…

Abstract

Purpose

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth directions under the influence of multiple crack parameters.

Design/methodology/approach

To determine the crack-growth direction in aluminum specimens, multiple crack parameters representing some degree of crack propagation complexity, including crack length, inclination angle, offset and distance, were examined. FE method models were developed for multiple crack growth simulations. To capture the complex relationships among multiple crack-growth variables, GRNN models were developed as nonlinear regression models. Six input variables and one output variable comprising 65 training and 20 test datasets were established.

Findings

The FE model could conveniently simulate the crack-growth directions. However, several multiple crack parameters could affect the simulation accuracy. The GRNN offers a reliable method for modeling the growth of multiple cracks. Using 76% of the total dataset, the NN model attained an R2 value of 0.985.

Research limitations/implications

The models are presented for static multiple crack growth problems. No material anisotropy is observed.

Practical implications

In practical crack-growth analyses, the NN approach provides significant benefits and savings.

Originality/value

The proposed GRNN model is simple to develop and accurate. Its performance was superior to that of other NN models. This model is also suitable for modeling multiple crack growths with arbitrary geometries. The proposed GRNN model demonstrates its prediction capability with a simpler learning process, thus producing efficient multiple crack growth predictions and assessments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 January 2020

Rouhin Deb, Harsh Vardhan Samalia and Santosh Kumar Prusty

Competitive pressure from informal firms has always been a threat to the formal enterprises. However, the strategic choices a firm makes to deal with such competitive pressures…

Abstract

Purpose

Competitive pressure from informal firms has always been a threat to the formal enterprises. However, the strategic choices a firm makes to deal with such competitive pressures still remain under-explored. The purpose of this paper is to examine the influence of informal competitive pressures in driving export propensity of formal firms.

Design/methodology/approach

The paper is based on a standard error logistic model, and the model takes into account the contingent relationships along with the primary relationship. The authors draw the sample of 9,812 manufacturing firms spanning across the Indian sub-continent from the World Bank enterprise survey conducted in the year 2014.

Findings

The empirical results indicated that the level of competition from informal firms is positively associated with the propensity to export. The primary relationship is also affected by various contingent factors such as regulatory obstacles, bribery and new product development.

Research limitations/implications

Although the World Bank enterprise survey data provide a broad coverage, the study warranted few proxy measures in order to operationalize formal competition as it was not captured directly in the concerned data set.

Practical implications

The analysis demonstrates that informal competition has direct effect on the firm’s propensity to export. The findings indicate that export is an attractive action alternative for firms facing informal completion in an emerging economy. The results further indicate that this effect strengthens as institutional factors such as regulatory obstacles and bribery increase.

Social implications

The paper is an attempt to alter the prevailing negative view on informality. The findings indicate that informal competition spurs competitiveness in the formal sector indicating its positive role in the economic growth of the nation.

Originality/value

The paper takes cue from attention-based view of the firm and the institutional escapism logic to affirm the role of informal competition and various contingent institutional and strategic factors in driving export propensity.

Details

International Journal of Sociology and Social Policy, vol. 40 no. 1/2
Type: Research Article
ISSN: 0144-333X

Keywords

Article
Publication date: 2 May 2017

Maruti K. Rendale, S.N. Mathad and Vijaya Puri

The present communication aims to investigate the influence of cobalt substitution on the structural, mechanical and elastic properties of nickel–zinc ferrite thick films. The…

Abstract

Purpose

The present communication aims to investigate the influence of cobalt substitution on the structural, mechanical and elastic properties of nickel–zinc ferrite thick films. The changes observed in the crystallite size (D), lattice constant (a), texture coefficient [TC(hkl)] and mechanical and elastic properties of the thick films due to cobalt substitution have been reported systematically.

Design/methodology/approach

Ni–Zn ferrites with the stoichiometric formula Ni0.7−xCoxZn0.3Fe2O4 (where, x = 0, 0.04, 0.08, 0.12, 0.16 and 0.20) were synthesized via solution combustion technique using sucrose as the fuel and poly-vinyl-alcohol as the matrix material. The thick films of the ferrites were fabricated on alumina substrates by the screen printing method. The thickness of the films was 25 μm, as measured by the gravimetric method. The thick films were subjected to X-ray diffraction and Fourier transform infrared spectroscopy.

Findings

The detailed study of variation of lattice parameter (a), sintering density, micro-strain and elastic properties with cobalt (Co+2) substituted was carried out. The remarkable increase in lattice parameter (from 8.369 A° to 8.3825 A°), bulk density and average grain size (69-119 nm) with the cobalt content was due to larger ionic radius of Co2+ compared to Ni2+. Texture analysis [TC(hkl)] reveals all thick films have adequate grain growth in the (311) plane direction. The main absorption bands of spinel ferrite have appeared through infrared absorption spectra recorded in the range of 300-700 cm−1.

Originality/value

The variation in stiffness constants (for isotropic material, C11 = C12), longitudinal elastic wave (Vl), transverse elastic wave (Vt), mean elastic velocity (VMean), rigidity modulus (G), Poisson’s ratio(s) and Young’s modulus (E) with cobalt (Co+2) composition has been interpreted in terms of binding forces found.

Details

Microelectronics International, vol. 34 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 28 June 2019

Deepak Jadhav and T.V. Ramanathan

An investor is expected to analyze the market risk while investing in equity stocks. This is because the investor has to choose a portfolio which maximizes the return with a…

Abstract

Purpose

An investor is expected to analyze the market risk while investing in equity stocks. This is because the investor has to choose a portfolio which maximizes the return with a minimum risk. The mean-variance approach by Markowitz (1952) is a dominant method of portfolio optimization, which uses variance as a risk measure. The purpose of this paper is to replace this risk measure with modified expected shortfall, defined by Jadhav et al. (2013).

Design/methodology/approach

Modified expected shortfall introduced by Jadhav et al. (2013) is found to be a coherent risk measure under univariate and multivariate elliptical distributions. This paper presents an approach of portfolio optimization based on mean-modified expected shortfall for the elliptical family of distributions.

Findings

It is proved that the modified expected shortfall of a portfolio can be represented in the form of expected return and standard deviation of the portfolio return and modified expected shortfall of standard elliptical distribution. The authors also establish that the optimum portfolio through mean-modified expected shortfall approach exists and is located within the efficient frontier of the mean-variance portfolio. The results have been empirically illustrated using returns from stocks listed in National Stock Exchange of India, Shanghai Stock Exchange of China, London Stock Exchange of the UK and New York Stock Exchange of the USA for the period February 2005-June 2018. The results are found to be consistent across all the four stock markets.

Originality/value

The mean-modified expected shortfall portfolio approach presented in this paper is new and is a natural extension of the Markowitz’s mean-variance and mean-expected shortfall portfolio optimization discussed by Deng et al. (2009).

Details

Studies in Economics and Finance, vol. 36 no. 3
Type: Research Article
ISSN: 1086-7376

Keywords

Article
Publication date: 4 December 2017

Michal Jan Smolnicki, Michal Ptak and Grzegorz Lesiuk

The combined numerical-experimental approach has been presented. The purpose of this paper is to determine the critical rupture load of the notched components based on the…

Abstract

Purpose

The combined numerical-experimental approach has been presented. The purpose of this paper is to determine the critical rupture load of the notched components based on the cohesive zone modeling (CZM).

Design/methodology/approach

The 42CrMo4 steel (in normalized state) state has been tested and modeled using an eXtended finite element method (xFEM) philosophy with the CZM approach. In order to validate the numerically obtained critical load forces the experimental verification was performed.

Findings

The critical loads were determined for various notch configurations. The numerical and experimental values were compared. Based on this, a good agreement between experimental and numerical data is achieved. The relative error does not exceed 7 percent.

Practical implications

The presented procedure and approach is effective and simple for engineering applications. It is worth to underline that the obtained critical load values for notched components require only the static tensile test results and implementation of the presented route in numerical FEM, xFEM environment.

Originality/value

The presented methodology is actual and still developed. The scientific and engineering value of the presented numerical procedure is high.

Details

International Journal of Structural Integrity, vol. 8 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 November 2023

Rituraj Raut, Savitri Jadhav and Nathrao B. Jadhav

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different…

Abstract

Purpose

The purpose of this study is to offer a better and more effective hexacopter design for a 3 kg payload using finite element analysis (FEA), facilitating the use of different materials for different components that too without compromising strength.

Design/methodology/approach

A 3D computer-aided design (CAD) model of a hexacopter with a regular hexagonal frame is presented. Furthermore, a finite element model is developed to perform a structural analysis and determine Von Mises stress and strain values along with deformations of different components of the proposed hexacopter design.

Findings

The results establish that carbon fibre outperforms acrylonitrile butadiene (ABS) with respect to deformations. Within the permissible limits of the stress and strain values, both carbon fiber and ABS are suggested for different components. Thus, a proposed hexacopter offers lighter weight, high strength and low cost.

Originality/value

The use of different materials for different components is suggested by making use of static structural analysis. This encourages new research work and helps in developing new applications of hexacopter, and it has never been reported in literature. The suggested materials for the components of the hexacopter will prove to be suitable considering weight, strength and cost.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 2
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 507