Search results

1 – 10 of over 2000
Book part
Publication date: 24 November 2023

Lyn M. Holley and Azusa Mokuta

Current research about American Indians of all ages is in short supply, yet design and allocation of public services and resources are increasingly guided by ‘evidence’ provided…

Abstract

Current research about American Indians of all ages is in short supply, yet design and allocation of public services and resources are increasingly guided by ‘evidence’ provided by research. The health and wellness of this population is persistently poorer than that of other marginalized populations. American Indian tribes have been beset progressively since the earliest arrival of European settlers by both malevolent and well-intentioned assaults on their cultures and peoples. This long history of cultural and physical genocide continues into the present and undermines the effectiveness of Eurocentric processes for research that have been shaped by values and beliefs antithetical to those of most tribes (e.g. individualism, proprietary ownership, science as the way of knowing). Individual and collective historical trauma is present in all of the more than 500 federally recognized tribes in the United States of America, and a lack of trust further compromises the validity and positive impact of most research. This chapter describes the roots and foundations of flawed and successful research and identifies practical resources and approaches that are valid and beneficial for conducting research with indigenous people. The processes described in this chapter are grounded in the experiences of tribes in the United States of America; however, parallel experiences of indigenous populations that have a continuing legacy of trauma are found in many other countries (such as in Brazil and New Zealand) and the insights and approaches found in this chapter may be applicable to some degree.

Details

Ethics and Integrity in Research with Older People and Service Users
Type: Book
ISBN: 978-1-80455-422-7

Keywords

Article
Publication date: 20 October 2023

Mohamed Ibrahim Al Ali, Osama Khassawneh, Washika Haak-Saheem, Jing Zeng and Tamer K. Darwish

The purpose of this study is to investigate the factors that influence the development of human capital by examining the interplay between different organizational mechanisms…

Abstract

Purpose

The purpose of this study is to investigate the factors that influence the development of human capital by examining the interplay between different organizational mechanisms, including leadership, organizational culture and human resources management (HRM) practices. This study aims to enhance our understanding of how knowledge exchange influences human capital, with a specific focus on the unique context of Dubai, an area and context that have been underexplored in this research domain.

Design/methodology/approach

This study used a survey-based approach, involving 611 participants working across different sectors based in Dubai. This study used partial least squares structural equation modeling as the statistical analysis method.

Findings

The results of the study indicate that leadership behaviors have a predictive influence on organizational culture. In turn, organizational culture significantly affects knowledge exchange. Additionally, the study reveals that commitment-based HRM practices play a significant moderating role in the relationship between organizational culture and knowledge exchange.

Originality/value

This study contributes to the existing literature by providing valuable insights into the interplay between leadership, organizational culture and commitment-based HRM practices. By exploring these factors and their influence on knowledge exchange and human capital, the study enhances both the theoretical understanding and practical application in this field.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 4 December 2023

Chandan Kumawat, Bhupendra Kumar Sharma, Taseer Muhammad and Liaqat Ali

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past…

Abstract

Purpose

The purpose of this study is to determine the impact of two-phase power law nanofluid on a curved arterial blood flow under the presence of ovelapped stenosis. Over the past couple of decades, the percentage of deaths associated with blood vessel diseases has risen sharply to nearly one third of all fatalities. For vascular disease to be stopped in its tracks, it is essential to understand the vascular geometry and blood flow within the artery. In recent scenarios, because of higher thermal properties and the ability to move across stenosis and tumor cells, nanoparticles are becoming a more common and effective approach in treating cardiovascular diseases and cancer cells.

Design/methodology/approach

The present mathematical study investigates the blood flow behavior in the overlapped stenosed curved artery with cylinder shape catheter. The induced magnetic field and entropy generation for blood flow in the presence of a heat source, magnetic field and nanoparticle (Fe3O4) have been analyzed numerically. Blood is considered in artery as two-phases: core and plasma region. Power-law fluid has been considered for core region fluid, whereas Newtonian fluid is considered in the plasma region. Strongly implicit Stone’s method has been considered to solve the system of nonlinear partial differential equations (PDE’s) with 10–6 tolerance error.

Findings

The influence of various parameters has been discussed graphically. This study concludes that arterial curvature increases the probability of atherosclerosis deposition, while using an external heating source flow temperature and entropy production. In addition, if the thermal treatment procedure is carried out inside a magnetic field, it will aid in controlling blood flow velocity.

Originality/value

The findings of this computational analysis hold great significance for clinical researchers and biologists, as they offer the ability to anticipate the occurrence of endothelial cell injury and plaque accumulation in curved arteries with specific wall shear stress patterns. Consequently, these insights may contribute to the potential alleviation of the severity of these illnesses. Furthermore, the application of nanoparticles and external heat sources in the discipline of blood circulation has potential in the medically healing of illness conditions such as stenosis, cancer cells and muscular discomfort through the usage of beneficial effects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 May 2023

Rashma R.S.V., Jayalekshmi B.R. and Shivashankar R.

The study aims to analyse the stability of embankments over the improved ground with stone column (SC) and pervious concrete column (PCC) inclusions using limit equilibrium…

Abstract

Purpose

The study aims to analyse the stability of embankments over the improved ground with stone column (SC) and pervious concrete column (PCC) inclusions using limit equilibrium method. The short-term stability of PCC-supported embankment system is rarely addressed. Therefore, the factor of safety (FOS) of column-supported embankment system is calculated using individual column and equivalent area models.

Design/methodology/approach

The stability analysis of column-supported embankment system is conducted using PLAXIS LE 2D. The various geometrical and shear strength parameters influencing the FOS of these embankment systems such as diameter of columns, spacing between columns, embankment height, friction angle of column material, undrained cohesion of weak ground and cohesion of PCC are considered.

Findings

The critical failure envelope of PCC-supported embankment system is observed to be of toe failure, whereas the failure envelope of stone column-supported embankment system is generally of deep-seated nature.

Originality/value

It is found that for PCC embankment system, FOS and failure envelope are not influenced by the geometrical/shear strength parameters other than height of embankment. However, for stone column-supported embankment system, FOS and failure envelope are dependent on all the shear strength and geometrical parameters considered in this study.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Book part
Publication date: 24 October 2023

Rodanthi Tzanelli

Abstract

Details

The New Spirit of Hospitality
Type: Book
ISBN: 978-1-83753-161-5

Article
Publication date: 4 April 2023

Soumaya Hadri, Souhila Rehab Bekkouche and Salah Messast

The paper aims to present an experimental and numerical investigation of the load–settlement behavior of soil reinforced by stone column, as well as to evaluate the plane strain…

Abstract

Purpose

The paper aims to present an experimental and numerical investigation of the load–settlement behavior of soil reinforced by stone column, as well as to evaluate the plane strain unit cell model for the analysis of stone columns.

Design/methodology/approach

The numerical analysis was done using both axisymmetric and plane strain models. The elastic perfectly plastic behavior of Mohr–Coulomb was adopted for both soil and column material. The numerical results of this study were validated by the comparison with the in-situ measurements of a full-scale loading test on a stone column. This study also evaluated the effect of different parameters involved in the design of a stone column, including Young’s modulus of the column material, column diameter, spacing between the stone columns and Poisson’s ratio of the column material.

Findings

After the numerical simulation, the results from both axisymmetric and plane strain models are quite comparable. In addition, the numerical results revealed that the stone column with low spacing, a large diameter and a high Young’s modulus indicated better behavior against the settlement.

Originality/value

The axisymmetric unit cell model was used in many numerical studies on the behavior of stone columns. In the present work, a field load test on stone column was simulated using a plane strain unit cell model. This research adds that the plane strain unit cell model can be used to predict the settlement of reinforced soil with stone columns.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Book part
Publication date: 24 January 2024

Kimberly Yost

Abstract

Details

Courageous Companions
Type: Book
ISBN: 978-1-83753-987-1

Article
Publication date: 9 April 2024

Selma Bahi and Mohamed Nabil Houhou

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased…

Abstract

Purpose

This study aims to investigate the behavior of different types of stone columns, including the short and floating columns, as well as the ordinary and the geosynthetic encased stone columns (OSC and GESC). The effectiveness of the geosynthetic encasement and the impact of the installation using the lateral expansion method on the column performance is evaluated through a three-dimensional (3D) unit cell numerical analysis.

Design/methodology/approach

A full 3D numerical analysis is carried out using the explicit finite element code PLAXIS 3D to examine the installation influence on settlement reduction (ß), lateral displacement (Ux) and vertical displacement (Uz) relative to different values of lateral expansion of the column (0% to 15%).

Findings

The findings demonstrate the superior performance of GESC, particularly short columns outperforming floating counterparts. This enhanced performance is attributed to the combined effects of geosynthetic encasement and increased lateral expansion. Notably, these strategies contribute significantly to decreasing lateral displacement (Ux) at the column’s edge and reducing vertical displacement (Uz) under the rigid footing.

Originality/value

In contrast to previous studies that examined the installation effect of OSC contexts, this paper presents a comprehensive investigation into the effect of geosynthetic encasement and the installation effects using the lateral expansion method in very soft soil, using 3D numerical simulation. The study emphasizes the significance of the consideration of geosynthetic encasement and lateral expansion of the column during the design process to enhance column performance.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 April 2024

Md. Ikramul Hoque, Muzamir Hasan and Shuvo Dip Datta

The stone dust column was used to strengthen the sample and had a significant effect on improving the shear strength of the kaolin clay. The application of stone columns, which…

Abstract

Purpose

The stone dust column was used to strengthen the sample and had a significant effect on improving the shear strength of the kaolin clay. The application of stone columns, which can improve the overall carrying capacity of soft clay as well as lessen the settlement of buildings built on it, is among the most widespread ground improvement techniques throughout the globe. The performance of foundation beds is enhanced by their stiffness values and higher strength, which could withstand more of the load applied. Stone dust is a wonderful source containing micronutrients for soil, particularly those derived from basalt, volcanic rock, granite and other related rocks. The aim of this paper is to evaluate the properties of soft clay reinforced with encapsulated stone dust columns to remediate problematic soil and obtain a more affordable and environmentally friendly way than using other materials.

Design/methodology/approach

In this study, the treated kaolin sample's shear strength was measured using the unconfined compression test (UCT). 28 batches of soil samples total, 12 batches of single stone dust columns measuring 10 mm in diameter and 12 batches of single stone dust columns measuring 16 mm in diameter. Four batches of control samples are also included. At heights of 60 mm, 80 mm and 100 mm, respectively, various stone dust column diameters were assessed. The real soil sample has a diameter of 50 mm and a height of 100 mm.

Findings

Test results show when kaolin is implanted with a single encased stone dust column that has an area replacement ratio of 10.24% and penetration ratios of 0.6, 0.8 and 1.0, the shear strength increase is 51.75%, 74.5% and 49.20%. The equivalent shear strength increases are 48.50%, 68.50% and 43.50% for soft soil treated with a 12.00% area replacement ratio and 0.6, 0.8 and 1.0 penetration ratios.

Originality/value

This study shows a comparison of how sample types affect shear strength. Also, this article provides argumentation behind the variation of soil strength obtained from different test types and gives recommendations for appropriate test methods for soft soil.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Content available
Book part
Publication date: 4 March 2024

Abstract

Details

Managing Destinations
Type: Book
ISBN: 978-1-83797-176-3

1 – 10 of over 2000