Search results

1 – 7 of 7
Article
Publication date: 14 September 2011

P. Sawhney, M. Reynolds, C. Allen, B. Condon, R. Slopek, D. Hinchliffe and D. Hui

The aim of this study was to determine feasibility of utilizing greige (non-bleached) cotton comber noils in the development of hydroentangled cotton fabrics for certain end-use…

Abstract

The aim of this study was to determine feasibility of utilizing greige (non-bleached) cotton comber noils in the development of hydroentangled cotton fabrics for certain end-use products and thereby to promote an economically and environmentally efficient utilization of cotton in sustainable textile products. The data from the feasibility study show that greige comber noils can be efficiently processed into nonwoven fabrics using an air-laid system for preparing a fibrous batt to feed a down-stream hydroentangling system. Furthermore, the study has shown that, for certain specific end-use applications where bleaching is required, the hydroentangled greige cotton fabric can be efficiently bleached without the customary costly and time consuming cotton scouring process. The elimination of the scouring process was made possible by the removal of cotton's natural hydrophobic contaminants (waxes) by optimizing the hydraulic pressure/energy metrics of the hydroentanglement process of producing nonwoven fabrics.

Details

World Journal of Engineering, vol. 8 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 May 2013

Paul Sawhney, Chuck Allen, Michael Reynolds, Ryan Slopek and Brian Condon

The aim of this research is to develop greige (raw/non-bleached) cotton-containing nonwoven fabrics that likely would be competitive in quality, cost and performance to existing…

Abstract

The aim of this research is to develop greige (raw/non-bleached) cotton-containing nonwoven fabrics that likely would be competitive in quality, cost and performance to existing products that presently and predominantly use man-made fibers and some bleached cotton for wipes and other similar end-use nonwoven products. Since the whiteness and absorbency of these end-use products generally are the most desired and perhaps even critical attributes, the research was mainly focused on attaining these attributes by exploring various choices and optimum use of a variety of cost-effective cotton fibers and the blends thereof with other fibers. Nonwoven fabrics were produced, via a modern hydroentanglement system, with possible choices of using several types of cotton fibers, including the greige cotton lint and certain of its co-products such as gin motes and comber noils, and their various blends with polyester and nylon staple fibers. Bleached cotton was also used to produce an equivalent fabric for comparison. The research has shown that although the desired and perhaps critical properties of whiteness and absorbency of the selected fibers vary considerably among the various fabrics produced, the blends of greige cotton lint with man-made fibers can provide the fabric whiteness and absorbency comparable to those of say, a, bleached cotton fabric. The research results suggest that the greige cotton lint and/or its co-products in blend with polyester fiber may be sensible approaches to the development of functionally acceptable nonwoven wiping products that are also environment friendly.

Details

World Journal of Engineering, vol. 10 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 November 2012

Paul Sawhney, Hiram Allen, Michael Reynolds, Ryan Slopek, Brian Condon, David Hui and Suhad Wojkowski

The aim of this study was to determine the effects of two popular web-forming technologies, viz., the Rando air-laid technology and the traditional carding and cross-laying…

Abstract

The aim of this study was to determine the effects of two popular web-forming technologies, viz., the Rando air-laid technology and the traditional carding and cross-laying technology, on properties of the hydroentangled nonwoven fabrics made therewith. A mill-like fiber processing study was conducted in a commercial-grade pilot plant using a variety of short staple fibers and their blends. The fibers used in the study were greige cotton, bleached cotton, cotton derivatives, and cut-staple polyester. The hydroentangled fabrics produced with the two systems were mainly evaluated for their physical and mechanical properties, absorbency, absorbency capacity, and whiteness. The study has shown that, with the exception of greige cotton linters, the greige cotton lint, greige cotton gin motes, and even greige cotton comber noils, either alone or in blend with the other fibers mentioned, can be mechanically processed into hydroentangled nonwoven fabric structures without any insurmountable difficulties. The drop test and sink time followed each other pretty closely, as the drop test time increased so did the sink times. The "whiteness" of fabric, which is significantly more dependent on the fabric's constituent fiber content than on the fabric's surface-based light reflection, obviously varied considerably. However, the whiteness index within the same fiber types and their blends shows no trend of significant difference between the fabric produced with carded fiber web and the fabric produced with random Rando fiber web. Incidentally, the Rando sample of bleached cotton was not available. Since the nonwoven fabrics of this discussion generally are disposable, the optional use of ‘brighteners’ to improve whiteness of certain whiteness-deficient fabrics may be considered as long as the brighteners do not easily bleed from the fabrics.

Details

World Journal of Engineering, vol. 9 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 April 2011

Amit S. Jariwala, Fei Ding, Aparna Boddapati, Victor Breedveld, Martha A. Grover, Clifford L. Henderson and David W. Rosen

The purpose of this paper is to present a model that can be used to simulate the photopolymerization process in micro‐stereolithography (SL) in order to predict the shape of the…

1372

Abstract

Purpose

The purpose of this paper is to present a model that can be used to simulate the photopolymerization process in micro‐stereolithography (SL) in order to predict the shape of the cured parts. SL is an additive manufacturing process in which liquid photopolymer resin is cross‐linked and converted to solid with a UV laser light source. Traditional models of SL processes do not consider the complex chemical reactions and species transport occurring during photopolymerization and, hence, are incapable of accurately predicting resin curing behavior. The model presented in this paper attempts to bridge this knowledge gap.

Design/methodology/approach

The chemical reactions involved in the photopolymerization of acrylate‐based monomers were modeled as ordinary differential equations (ODE). This model incorporated the effect of oxygen inhibition and diffusion on the polymerization reaction. The model was simulated in COMSOL and verified with experiments conducted on a mask‐based micro‐SL system. Parametric studies were conducted to investigate the possibilities to improve the accuracy of the model for predicting the edge curvature.

Findings

The proposed model predicts well the effect of oxygen inhibition and diffusion on photopolymerization, and the model accurately predicts the cured part height when compared to experiments conducted on a mask‐based SL system. The simulated results also show the characteristic edge curvature as seen in experiments.

Research limitations/implications

A triacrylate monomer was used in the experiments conducted, so results may be limited to acrylate monomers. Shrinkage was not considered when comparing cured part shapes to those predicted using COMSOL.

Originality/value

This paper presents a unique and a pioneering approach towards modeling of the photopolymerization reaction in micro‐SL process. This research furthers the development of patent pending film micro‐SL process which can be used for fabrication of custom micro‐optical components.

Details

Rapid Prototyping Journal, vol. 17 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 July 2018

Ravi Kumar Jain, Sujit Kumar Sinha and Apurba Das

Spunlacing is a promising nonwoven technology for the production of fabric with good handle and better structural integrity. Structural parameters such as pore size, thickness and…

Abstract

Purpose

Spunlacing is a promising nonwoven technology for the production of fabric with good handle and better structural integrity. Structural parameters such as pore size, thickness and number of binding point/entanglement between fibres are decisive for good mechanical and comfort properties of nonwoven fabrics. This study aims to focus on the effect of different process parameters on the structural change in spunlace fabrics.

Design/methodology/approach

Spunlacing is purely a mechanical bonding technology where high-speed jets of water strike a web to entangle the fibres. Different spunlace nonwoven structures were produced by varying processing parameters such as waterjet pressure, delivery speed, web mass and web composition as per four-factor, three-level Box–Behnken design. The effect of these parameters on the structural arrangement was studied using scanning electron microscopy. An attempt has also been made to study the changes in pore geometry and thickness of the fabrics by using response surface methodology with backward elimination.

Findings

Significant structural changes were observed with variation in water pressure, web mass and web composition. The test results showed that fabric produced at higher waterjet pressure has lower mean pore diameter and lower thickness. The variation in mean pore diameter and mean thickness due to waterjet pressure is around 26 and 34 per cent, respectively, at 95 per cent significance level. The web composition and web mass also significantly influence the mean pore diameter and thickness at 95 per cent significance level. There is a strong positive correlation (r = 0.523) between mean air permeability and mean pore diameter of fabric, and this correlation is significantly linear. A strong negative correlation (r = −0.627) is found between weight and air permeability of fabric.

Research limitations/implications

The delivery speed failed to show any significant effect; this is in contrary to the general expectation.

Originality/value

The effect of concurrent variation in waterjet pressure, web mass, delivery speed and web composition on the structure of spunlace nonwoven is studied, which was not reported in the literature. The effect of web composition on pore diameter of spunlace nonwoven is interesting finding. This study is expected to help in designing the spunlace nonwoven as per end uses and specifically for apparel application.

Details

Research Journal of Textile and Apparel, vol. 22 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 18 April 2016

Marlon Wesley Machado Cunico and Jonas de Carvalho

Over the past few years, the number of related research to additive manufacturing (AM) has risen. The selective composite formation (SCF) can also be found among the new…

Abstract

Purpose

Over the past few years, the number of related research to additive manufacturing (AM) has risen. The selective composite formation (SCF) can also be found among the new technologies that were developed. This technology was first introduced in 2013, and because of its innovative character, there are still many challenges to be overcome. Therefore, the main aim of this study is to present a finite element method which allows to investigate the processing of the material during the selective formation of a composite material based on cellulose and acrylic.

Design/methodology/approach

In the beginning, we introduced a brand new finite element method approach which is based on light transmittance network and photopolymerisation in transient state. This method is mainly characterised by internal light absorption, transversal reflectance, light transmittance coefficient and photopolymerisation kinetics. The authors defined experimentally the main model coefficients besides investigating the formation of composite material in six case studies. The main variables evaluated in those studies were the number of layers and the number of lines. By the end, the degree of polymer conversion and the preliminary evaluation of adherence between layers were identified in addition to the formation profile of composite material.

Findings

The presented method evidence that the SCF resulted in a profile of polymerisation which is different from profiles found in vat polymerisation processes. It was shown that the light diffraction increases polymerisation area to outside of laser limits and reduces the penetration depth. It was also exposed that the selective formation of composite material on the top layer interferes with the polymerisation of previous layers and might increase the polymerised area in about 25 per cent per layer. By the end, adherence between layers was evidenced because of a high-pass filter that limited polymer conversion to over 60 per cent. In this case, the adherence between the top layers was provided by the interface between layers, while the deeper layers resulted in a solid formed by composite.

Originality/value

This paper presents research results related to a very new AM technology and also proposes a new method to characterise this concept. Because of this new analytic approach, the process planning can be simulated and optimised, in addition to being a useful tool for other researches related to photocurable polymers and AM technologies.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 March 2014

Marlon Wesley Machado Cunico and Jonas de Carvalho

Over the last several years, the range of applications for the photopolymerisation process has been steadily increasing, especially in such areas as rapid prototyping, UV inks, UV…

Abstract

Purpose

Over the last several years, the range of applications for the photopolymerisation process has been steadily increasing, especially in such areas as rapid prototyping, UV inks, UV coats and orthodontic applications. In spite of this increase, there are still several challenges to be overcome when the application concerns materials formulation and their mechanical properties. In this context, the main aim of this work is to outline the contribution of the formulation components for the parameters of the photopolymerisation process and the resultant mechanical properties of the material.

Design/methodology/approach

For this research, the authors have applied multivariable analysis methods, which allow the identification of principal conclusions based on experimental results. For the experimental analysis, the authors applied design of experiment, while the material formulation was based on methyl methacrylate as a monomer, Omnrad 2500 as a photoinitiator and trimethylolpropane triacrylate as an oligomer. The authors analysed the photopolymerisation rate, viscosity, mechanical tensile strength, flexural stiffness and softening. These results comprise a multiobjective optimisation study to identify the ideal material formulation for additive manufacturing applications. The values chosen for the materials were the following: the initiator concentration was 2 and 5% wt., the monomer volume was 5 and 10 ml and the oligomer volume was 3 and 5 ml. To analyse the system kinetics and the photopolymerisation rate, the authors identified the polymer conversion rate through a photometric-cum-gravimetric method with a wavelength of 390 nm at the peak intensity. For the softening test, the authors identified the stiffness of the material as a function of temperature, characterising the thermal-mechanical behaviour of the material and determining its degree of crystallinity (cross-linking). Additionally, the authors performed an optimisation to maximise the mechanical tensile strength, flexural stiffness, softening temperature and photopolymerisation rate while minimising the viscosity.

Findings

Based on these studies, it was possible to identify the influence of the monomer/oligomer ratio and the initiator concentration as function of polymerisation rate, viscosity, mechanical tensile strength, stiffness and softening of the material. It was also possible to determine the photopolymerisation rate in addition to the constants of propagation and termination. As a result of these studies, the authors identified a material formulation that resulted in a softening temperature greater than 70°C, while the viscosity of material remained lower than 3 cP. The mechanical ultimate tensile strength was between 10 and 50 MPa, and the stiffness was between 1.6 and 5.8 GPa. The effect of cross-linking on the process highlighted the interaction between the monomer/oligomer ratio and the initiator. The contribution of the initiator and the inhibitor to the polymerisation rate was identified via a numerical model, which allows the prediction of the material's behaviour in different process conditions, as such curing time and penetration depth.

Originality/value

The main value of this work is to show the possibility of optimized photopolymerizable systems through an experimental approach as a function of the mechanical properties of material. In addition, it emphasised the possibility of predicting the material behaviour in front of different situations.

Details

Rapid Prototyping Journal, vol. 20 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Access

Year

Content type

Article (7)
1 – 7 of 7