Search results

1 – 10 of 241
Article
Publication date: 1 February 1993

R. DE BORST, L.J. SLUYS, H.‐B. MUHLHAUS and J. PAMIN

Classical continuum models, i.e. continuum models that do not incorporate an internal length scale, suffer from excessive mesh dependence when strain‐softening models are used in…

1793

Abstract

Classical continuum models, i.e. continuum models that do not incorporate an internal length scale, suffer from excessive mesh dependence when strain‐softening models are used in numerical analyses and cannot reproduce the size effect commonly observed in quasi‐brittle failure. In this contribution three different approaches will be scrutinized which may be used to remedy these two intimately related deficiencies of the classical theory, namely (i) the addition of higher‐order deformation gradients, (ii) the use of micropolar continuum models, and (iii) the addition of rate dependence. By means of a number of numerical simulations it will be investigated under which conditions these enriched continuum theories permit localization of deformation without losing ellipticity for static problems and hyperbolicity for dynamic problems. For the latter class of problems the crucial role of dispersion in wave propagation in strain‐softening media will also be highlighted.

Details

Engineering Computations, vol. 10 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1985

R. de Borst and P. Nauta

A new model for handling non‐orthogonal cracks within the smeared crack concept is described. It is based on a decomposition of the total strain increment into a concrete and into…

Abstract

A new model for handling non‐orthogonal cracks within the smeared crack concept is described. It is based on a decomposition of the total strain increment into a concrete and into a crack strain increment. This decomposition also permits a proper combination of crack formation with other non‐linear phenomena such as plasticity and creep and with thermal effects and shrinkage. Relations are elaborated with some other crack models that are currently used for the analysis of concrete structures. The model is applied to some problems involving shear failures of reinforced concrete structures such as a moderately deep beam and an axisymmetric slab. The latter example is also of interest in that it confirms statements that ‘reduced integration’ is not reliable for problems involving crack formation and in that it supports the assertion that identifying numerical divergence with structural failure may be highly misleading.

Details

Engineering Computations, vol. 2 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 April 1989

René de Borst and Jan G. Rots

The behaviour of cracked finite elements is investigated. It is shown that spurious kinematic modes may emerge when softening type constitutive laws are employed. These modes are…

Abstract

The behaviour of cracked finite elements is investigated. It is shown that spurious kinematic modes may emerge when softening type constitutive laws are employed. These modes are not always suppressed by surrounding elements. This is exemplified for a double‐notched concrete beam and for a Crack‐Line‐Wedge‐Loaded Double‐Cantilever‐Beam (CLWL—DCB). The latter example has been analysed for a large variety of finite elements and integration schemes. To investigate the phenomenon in greater depth an eigenvalue analysis has been carried out for some commonly used finite elements.

Details

Engineering Computations, vol. 6 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 February 2001

H.W. Zhang, O.M. Heeres, R. de Borst and B.A. Schrefler

Extends the stress update algorithm and the tangent operator recently proposed for generalized plasticity by De Borst and Heeres to the case of partially saturated soils, where on…

1085

Abstract

Extends the stress update algorithm and the tangent operator recently proposed for generalized plasticity by De Borst and Heeres to the case of partially saturated soils, where on top of the hydrostatic and deviatoric components of the (effective) stress tensor suction has to be considered as a third independent variable. The soil model used for the applications is the Bolzon‐Schrefler‐Zienkiewicz model, which is an extension of the Pastor‐Zienkiewicz model to partial saturation. The algorithm is incorporated in a code for partially saturated soil dynamics. Back calculation of a saturation test and simulation of surface subsidence above an exploited gas reservoir demonstrate the advantage of the proposed algorithm in terms of iteration convergence of the solution.

Details

Engineering Computations, vol. 18 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1991

RENÉ DE BORST

Classical continuum models, i.e. continuum models that do not incorporate an internal length scale, suffer from pathological mesh‐dependence when strain‐softening models are…

1440

Abstract

Classical continuum models, i.e. continuum models that do not incorporate an internal length scale, suffer from pathological mesh‐dependence when strain‐softening models are employed in failure analyses. In this contribution the governing field equations are regularized by adding rotational degrees‐of‐freedom to the conventional translational degrees‐of‐freedom. This so‐called elasto‐plastic Cosserat continuum model, for which an efficient and accurate integration algorithm and a consistent tangent operator are also derived in this contribution, warrants convergence of the load—deflection curve to a unique solution upon mesh refinement and a finite width of the localization zone. This is demonstrated for an infinitely long shear layer and a biaxial test of a strain‐softening elasto‐plastic von Mises material.

Details

Engineering Computations, vol. 8 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1991

P.A.J. VAN DEN BOGERT, R. DE BORST, G.T. LUITEN and J. ZEILMAKER

A marked characteristic of rubber‐like materials is the nearly incompressible behaviour. This type of behaviour is best modelled by mixed finite elements with separate…

Abstract

A marked characteristic of rubber‐like materials is the nearly incompressible behaviour. This type of behaviour is best modelled by mixed finite elements with separate interpolation functions for the displacements and the pressure. In this contribution the performance of three‐dimensional elements is investigated using a two‐tiered strategy. First, the ability of some linear and quadratic three‐dimensional elements to deform correctly under nearly isochoric conditions is estimated using the well‐known constraint‐counting method, in which the ratio of the number of degrees‐of‐freedom over the number of kinematic constraints present in the finite element mesh is determined. Next, the performance of the elements is assessed by numerical simulations for three cuboidal rubber blocks with different shape factors. The results turn out to be quite sensitive with respect to the ratio of the number of degrees‐of‐freedom over the number of kinematic constraints, since too many pressure degrees‐of‐freedom make the element overstiff, while too few pressure degrees‐of‐freedom may cause the occurrence of spurious kinematic modes. This observation appears to be not only valid for the global structural behaviour, but also with respect to the specific parts in the structure, where the above‐mentioned ratio is different from the global number, e.g., in corners of the structure.

Details

Engineering Computations, vol. 8 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2000

J.P.M. Gonçalves, M.F.S.F. de Moura, P.M.S.T. de Castro and A.T. Marques

An interface finite element for three‐dimensional problems based on the penalty method is presented. The proposed element can model joints/interfaces between solid finite elements…

1108

Abstract

An interface finite element for three‐dimensional problems based on the penalty method is presented. The proposed element can model joints/interfaces between solid finite elements and also includes the propagation of damage in pure mode I, pure mode II and mixed mode considering a softening relationship between the stresses and relative displacements. Two different contact conditions are considered: point‐to‐point constraint for closed points (not satisfying the failure criterion) and point‐to‐surface constraint for opened points. The performance of the element is tested under mode I, mode II and mixed mode loading conditions.

Details

Engineering Computations, vol. 17 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1995

L.J. Sluys, M. Cauvern and R. De Borst

The dispersive behaviour of waves in softening problems is analysed.Attention is focused on the influence of the numerical scheme on thedispersion characteristics in the process…

Abstract

The dispersive behaviour of waves in softening problems is analysed. Attention is focused on the influence of the numerical scheme on the dispersion characteristics in the process of localization of deformation. Distinction has been made between softening models defined in a standard plasticity framework and in a gradient‐dependent plasticity theory. Waves in a standard softening plasticity continuum do not disperse but due to spatial discretization dispersion is introduced which results in a mesh size dependent length scale effect. On the other hand, wave propagation in a gradient‐dependent softening plasticity continuum is dispersive. By carrying out the dispersion analysis on the discretized system the influence of numerical dispersion on material dispersion can be quantified which enables us to determine the accuracy for the solution of the localization zone. For a modelling with and without the inclusion of strain gradients accuracy considerations with respect to mass discretization, finite element size, time integration scheme and time step have been carried out.

Details

Engineering Computations, vol. 12 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1988

E. Oñate, S. Oller, J. Oliver and J. Lubliner

A constitutive model based on classical plasticity theory for non‐linear analysis of concrete structures using finite elements is presented. The model uses the typical parameters…

Abstract

A constitutive model based on classical plasticity theory for non‐linear analysis of concrete structures using finite elements is presented. The model uses the typical parameters of non‐associated plasticity theory for frictional materials and a modified Mohr‐Coulomb yield surface is suggested. Onset and amount of cracking at a point are controlled by the values of the effective plastic strain and thus it can be studied by a posteriori postprocessing of numerical results. The accuracy and objectivity of the model is checked out with some examples of application.

Details

Engineering Computations, vol. 5 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 February 2001

R. de Borst, G.N. Wells and L.J. Sluys

The formulation of finite elements with incompatible discontinuous modes is examined rigorously. Both weak and strong discontinuities are considered. Starting from a careful…

Abstract

The formulation of finite elements with incompatible discontinuous modes is examined rigorously. Both weak and strong discontinuities are considered. Starting from a careful elaboration of the kinematics for both types of discontinuities a comprehensive finite element formulation is derived based on a three‐field variational statement. Similarities and differences are highlighted between the various formulations which ensue.

Details

Engineering Computations, vol. 18 no. 1/2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 241