Search results

1 – 2 of 2
Article
Publication date: 11 November 2014

R. Ecault, M. Boustie, L. Berthe, F. Touchard, L. Chocinski-Arnault, H. Voillaume and B. Campagne

The purpose of this paper is to develop a laser shock adhesion test (LASAT) and evaluate its ability to reveal various bond qualities of stuck carbon fiber reinforced polymer…

Abstract

Purpose

The purpose of this paper is to develop a laser shock adhesion test (LASAT) and evaluate its ability to reveal various bond qualities of stuck carbon fiber reinforced polymer (CFRP) industrial assemblies.

Design/methodology/approach

Four grades of adhesion were prepared by release agent contamination of CFRP prior to assembly. Laser shots were performed at different intensities on these samples.

Findings

To characterize and quantify the damage created by the propagation of shock waves in the bonded material, several diagnoses were used (confocal microscopy, ultra-sound inspection and cross-sections microscopy). These three post-mortem techniques are complementary and provide consistent results.

Originality/value

The combination of these diagnoses along with the LASAT technique provides relevant information on the bond quality in agreement with GIC values measured by the University of Patras.

Details

International Journal of Structural Integrity, vol. 5 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 June 2017

Fabienne Touchard, Michel Boustie, Laurence Chocinski-Arnault, Pedro Pascual González, Laurent Berthe, Davi de Vasconcellos, Luigi Sorrentino, Pawel Malinowski and Wieslaw Ostachowicz

The purpose of this paper is to study the damage induced in “green” and synthetic composites under impact loading.

Abstract

Purpose

The purpose of this paper is to study the damage induced in “green” and synthetic composites under impact loading.

Design/methodology/approach

The study was focussed on epoxy-based composites reinforced with woven hemp or glass fibres. Six assessment techniques were employed in order to analyse and compare impact damages: eye observation, back face relief, terahertz spectroscopy, laser vibrometry, x-ray micro-tomography and microscopic observations.

Findings

Different damage detection thresholds for each material and technique were obtained. Damage induced by mechanical and laser impacts showed relevant differences, but the damage mechanisms are similar in both types of impact: matrix cracks, fibre failure, debonding at the fibres/matrix interface and delamination. Damage shape on back surfaces is similar after mechanical or laser impacts, but differences were detected inside samples.

Originality/value

The combination of these six diagnoses provides complementary information on the damage induced by mechanical or laser impacts in the studied green and synthetic composites.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 2 of 2