Search results

1 – 3 of 3
To view the access options for this content please click here
Article

S. Rizzo, R. Spallino and G. Giambanco

Approaches the shakedown optimal design of reinforced concrete (RC) structures, subjected to variable and repeated external quasi‐static actions which may generate the…

Abstract

Approaches the shakedown optimal design of reinforced concrete (RC) structures, subjected to variable and repeated external quasi‐static actions which may generate the well‐known shakedown or adaptation phenomenon, when constraints are imposed on deflection and/or deformation parameters, in order to simulate the limited flexural ductility of the material, in the presence of combined axial stress and bending. Within this context, the classical shakedown optimal design problem is revisited, using a weak upper bound theorem on the effective plastic deformations. For this problem a new computational algorithm, termed evolution strategy, is herein presented. This algorithm, derived from analogy with the biological evolution, is based on random operators which allow one to treat the areas of steel reinforcements at each RC cross‐section of the structure as design variables of discrete type, and to use refined non‐linear approximations of the effective bending moment – axial force M‐N interaction diagrams of each RC cross‐section. The results obtained from case studies available in the literature show the advantages of the method and its effectiveness.

Details

Engineering Computations, vol. 17 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view…

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article

Roberto Spallino, Giuseppe Giambanco and Santi Rizzo

This paper is devoted to the optimal design of laminated composite structures. The goal of the study is to assess the quality and the performance of an algorithm based on…

Abstract

This paper is devoted to the optimal design of laminated composite structures. The goal of the study is to assess the quality and the performance of an algorithm based on the directional derivative method. Particular attention is paid to the one‐dimensional search, a critical step of the process, performed by cubic splines approximation. The optimization problem is formulated as weight minimization, under constraints on the mechanical behavior of the structure. The assumed design variables are the ply thicknesses, treated as continuous design variables, constrained by technological requirements. The structural analysis is performed making use of quadrilateral four‐node composite elements, based on the first order shear deformation theory. The algorithm is applied to the optimization of a rectangular laminated plate. The results obtained are compared with those obtained by other similar studies and show the effectiveness and accuracy of the proposed approach.

Details

Engineering Computations, vol. 16 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 3 of 3