Search results

1 – 10 of 494
To view the access options for this content please click here
Article
Publication date: 12 June 2018

Yuran Jin, Xin Li, R. Ian Campbell and Shoufeng Ji

3D printing is believed to be driving the third industrial revolution. However, a scientometric visualizing of 3D printing research and an exploration its hotspots and…

Abstract

Purpose

3D printing is believed to be driving the third industrial revolution. However, a scientometric visualizing of 3D printing research and an exploration its hotspots and emerging trends are lacking. This study aims to promote the theory development of 3D printing, help researchers to determine the research direction and provide a reference for enterprises and government to plan the development of 3D printing industry by a comprehensive understanding of the hotspots and trends of 3D printing.

Design/methodology/approach

Based on the theory of scientometrics, 2,769 literatures on the 3D printing theme were found in the Web of Science Core Collection’ Science Citation Index Expanded (SCI-EXPANDED) index between 1995-2016. These were analyzed to explore the research hotspots and emerging trends of 3D printing with the software CiteSpaceIII.

Findings

Hotspots had appeared first in 1993, grew rapidly from 2005 and peaked in 2013; hotspots in the “medical field” appeared earliest and have remained extremely active; hotspots have evolved from “drug”, “printer”, “rapid prototyping” and “3D printing” in the 1990s, through “laser-induced consolidation”, “scaffolds”, “sintering” and “metal matrix composites” in the 2000s, to the current hotspots of “stereolithography”, “laser additive manufacturing”, “medical images”; “3D bioprinting”, “titanium”, “Cstem cell” and “chemical reaction” were the emerging hotspots in recent years; “Commercial operation” and “fusion with emerging technology such as big data” may create future hotspots.

Research limitations/implications

It is hard to avoid the possibility of missing important research results on 3D printing. The relevant records could be missing if the query phrases for topic search do not appear in records. Besides, to improve the quality of data, this study selected articles and reviews as the research objects, which may also omit some records.

Originality/value

First, this is the first paper visualizing the hotspots and emerging trends of 3D printing using scientometric tools. Second, not only “burst reference” and “burst keywords” but also “cluster” and “landmark article” are selected as the evaluation factors to judge the hotspots and trends of a domain comprehensively. Third, overall perspective of hotspots and trends of 3D printing is put forward for the first time.

Details

Rapid Prototyping Journal, vol. 24 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 11 February 2020

Vito Ricotta, Robert Ian Campbell, Tommaso Ingrassia and Vincenzo Nigrelli

The purpose of this paper is to implement a new process aimed at the design and production of orthopaedic devices fully manufacturable by additive manufacturing (AM). In…

Abstract

Purpose

The purpose of this paper is to implement a new process aimed at the design and production of orthopaedic devices fully manufacturable by additive manufacturing (AM). In this context, the use of generative algorithms for parametric modelling of additively manufactured textiles (AMTs) also has been investigated, and new modelling solutions have been proposed.

Design/methodology/approach

A new method for the design of customised elbow orthoses has been implemented. In particular, to better customise the elbow orthosis, a generative algorithm for parametric modelling and creation of a flexible structure, typical of an AMT, has been developed.

Findings

To test the developed modelling algorithm, a case study based on the design and production of an elbow orthosis made by selective laser sintering was investigated. The obtained results have demonstrated that the implemented algorithm overcomes many drawbacks typical of the traditional computer aided design (CAD) modelling approaches. The parametric CAD model of the orthosis obtained through the new approach is characterised by a flexible structure with no deformations or mismatches and has been effectively used to produce the prototype through AM technologies.

Originality/value

The obtained results present innovative elements of originality in the CAD modelling sector, which can contribute to solving problems related to modelling for AM in different application fields.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 20 April 2015

R. Ian Campbell

Abstract

Details

Rapid Prototyping Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2546

Content available
Article
Publication date: 14 January 2014

R. Ian Campbell

Abstract

Details

Rapid Prototyping Journal, vol. 20 no. 1
Type: Research Article
ISSN: 1355-2546

Content available
Article
Publication date: 18 January 2016

R. Ian Campbell

Abstract

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Content available
Article
Publication date: 15 June 2015

R. Ian Campbell

Abstract

Details

Rapid Prototyping Journal, vol. 21 no. 4
Type: Research Article
ISSN: 1355-2546

To view the access options for this content please click here
Article
Publication date: 20 April 2015

Abby Megan Paterson, Richard Bibb, R. Ian Campbell and Guy Bingham

– The purpose of this paper is to compare four different additive manufacturing (AM) processes to assess their suitability in the context of upper extremity splinting.

Abstract

Purpose

The purpose of this paper is to compare four different additive manufacturing (AM) processes to assess their suitability in the context of upper extremity splinting.

Design/methodology/approach

This paper describes the design characteristics and subsequent fabrication of six different wrist splints using four different AM processes: laser sintering (LS), fused deposition modelling (FDM), stereolithography (SLA) and polyjet material jetting via Objet Connex. The suitability of each process was then compared against competing designs and processes from traditional splinting. The splints were created using a digital design workflow that combined recognised clinical best practice with design for AM principles.

Findings

Research concluded that, based on currently available technology, FDM was considered the least suitable AM process for upper extremity splinting. LS, SLA and material jetting show promise for future applications, but further research and development into AM processes, materials and splint design optimisation is required if the full potential is to be realised.

Originality/value

Unlike previous work that has applied AM processes to replicate traditional splint designs, the splints described are based on a digital design for AM workflow, incorporating novel features and physical properties not previously possible in clinical splinting. The benefits of AM for customised splint fabrication have been summarised. A range of AM processes have also been evaluated for splinting, exposing the limitations of existing technology, demonstrating novel and advantageous design features and opportunities for future research.

Details

Rapid Prototyping Journal, vol. 21 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 12 April 2011

Eujin Pei, R. Ian Campbell and Deon de Beer

The purpose of this paper is to examine the limitations of entry‐level rapid prototyping (ELRP) machines when fabricating objects with high complexity.

Abstract

Purpose

The purpose of this paper is to examine the limitations of entry‐level rapid prototyping (ELRP) machines when fabricating objects with high complexity.

Design/methodology/approach

The literature review provides an overview of RP technologies, followed by a discussion on the different levels of complexity in objects. The paper continues with a discussion on the definition of ELRP, followed by a number of experiments to explore the limitations of an ELRP system when fabricating complex models, and to compare the results obtained with those from a professional RP machine using standardised build parameters and the same acrylonitrile butadiene styrene material.

Findings

Of the five complex models that were produced from the Rapman machine, four of them were affected by warping; also, support structures were difficult to remove due to the interwoven build pattern. The study also found that the Rapman parts were coarsely built as opposed to the Dimension parts that were less coarse. The Rapman parts were also much lighter due to the hollow internal structure, as compared to the dimension parts that were virtually solid. From a quantitative viewpoint, parts produced from the Rapman machine showed significantly greater average errors in both absolute and percentage terms.

Practical implications

Users should bear in mind the restrictions of ELRP machines when fabricating complex shapes. The models may be prone to warping and the support structures could be difficult to remove.

Originality/value

This paper allows developers to understand the restrictions when fabricating complex models on an ELRP machine. The findings will also enable manufacturers to develop better entry‐level systems.

Details

Assembly Automation, vol. 31 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

To view the access options for this content please click here
Article
Publication date: 1 December 2003

Mark A. Evans and R. Ian Campbell

This paper discusses a research programme in which the 3D computer aided industrial design geometry for a consumer product was translated into appearance models using the…

Abstract

This paper discusses a research programme in which the 3D computer aided industrial design geometry for a consumer product was translated into appearance models using the contrasting techniques of workshop‐based fabrication techniques and rapid prototyping using stereolithography. The research also examined the capacity to extend the use of the rapid prototype components for the production of a fully working prototype. The ability to combine an appearance model and a working prototype into a single “appearance prototype” was a significant advance in the application of RP within industrial design.

Details

Rapid Prototyping Journal, vol. 9 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 3 April 2007

Michèle Truscott, Deon de Beer, George Vicatos, Keith Hosking, Ludrick Barnard, Gerrie Booysen and R. Ian Campbell

The last decade has seen major advances in rapid prototyping (RP), with it becoming a multi‐disciplinary technology, crossing various research fields, and connecting…

Abstract

Purpose

The last decade has seen major advances in rapid prototyping (RP), with it becoming a multi‐disciplinary technology, crossing various research fields, and connecting continents. Process and material advancements open up new applications and manufacturing (through RP) is serving non‐traditional industries. RP technology is used to support rapid product development (RPD). The purpose of this paper is to describe how the Integrated Product Development research group of the Central University of Technology, Free State, South Africa is applying various CAD/CAM/RP technologies to support a medical team from the Grootte Schuur and Vincent Palotti hospitals in Cape Town, to save limbs – as a last resort at a stage where conventional medical techniques or practices may not apply any longer.

Design/methodology/approach

The paper uses action research to justify the proposal of a new method to use CAD/CAM/RP related technologies to substitute lost/damaged bone regions through the use of CT to CAD to.STL manipulation.

Findings

A case study where RP related technologies were used to support medical product development for a patient with severe injuries from a road accident is discussed.

Originality/value

The paper considers current available technologies, and discusses new advancements in direct metal freeform fabrication, and its potential to revolutionise the medical industry.

Details

Rapid Prototyping Journal, vol. 13 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 494