Search results

1 – 10 of 33
Article
Publication date: 23 November 2018

Neeraj Dhiman and Mohammad Tamsir

The purpose of this paper is to present a new method, namely, “Re-modified quintic B-spline collocation method” to solve the Kuramoto–Sivashinsky (KS) type equations. In this…

Abstract

Purpose

The purpose of this paper is to present a new method, namely, “Re-modified quintic B-spline collocation method” to solve the Kuramoto–Sivashinsky (KS) type equations. In this method, re-modified quintic B-spline functions and the Crank–Nicolson formulation is used for space and time integration, respectively. Five examples are considered to test out the efficiency and accuracy of the method. The main objective is to develop a method which gives more accurate results and reduces the computational cost so that the authors require less memory storage.

Design/methodology/approach

A new collocation technique is developed to solve the KS type equations. In this technique, quintic B-spline basis functions are re-modified and used to integrate the space derivatives while time derivative is discretized by using Crank–Nicolson formulation. The discretization yields systems of linear equations, which are solved by using Gauss elimination method with partial pivoting.

Findings

Five examples are considered to test out the efficiency and accuracy of the method. Finally, the present study summarizes the following outcomes: first, the computational cost of the proposed method is the less than quintic B-spline collocation method. Second, the present method produces better results than those obtained by Lattice Boltzmann method (Lai and Ma, 2009), quintic B-spline collocation method (Mittal and Arora, 2010), quintic B-spline differential quadrature method (DQM) (Mittal and Dahiya, 2017), extended modified cubic B-spline DQM (Tamsir et al., 2016) and modified cubic B-splines collocation method (Mittal and Jain, 2012).

Originality/value

The method presented in this paper is new to best of the authors’ knowledge. This work is the original work of authors and the manuscript is not submitted anywhere else for publication.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 August 2013

Youdong Chen, Liang Yan, Hongxing Wei and Tianmiao Wang

This paper aims to present a technique for optimal trajectory planning of industrial robots that applies a new harmony search (HS) algorithm.

Abstract

Purpose

This paper aims to present a technique for optimal trajectory planning of industrial robots that applies a new harmony search (HS) algorithm.

Design/methodology/approach

The new HS optimization algorithm adds one more operation to the original HS algorithm. The objective function to be minimized is the trajectory execution time subject to kinematical and mechanical constraints. The trajectory is built by quintic B‐spline curves and cubic B‐spline curves.

Findings

Simulation experiments have been undertaken using a 6‐DOF robot QH165. The results show that the proposed technique is valid and that the trajectory obtained using quintic B‐spline curves is smoother than the trajectory using cubic B‐spline curves.

Originality/value

The proposed new HS algorithm is more efficient than the sequential quadratic programming method (SQP) and the original HS method. The proposed technique is applicable to any industrial robot and yields smooth and time‐optimal trajectories.

Details

Industrial Robot: An International Journal, vol. 40 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 April 2020

Neeraj Dhiman, Amit Chauhan, Mohammad Tamsir and Anand Chauhan

A collocation technique based on re-defined quintic B-splines over Crank-Nicolson is presented to solve the Fisher's type equation. We take three cases of aforesaid equation. The…

Abstract

Purpose

A collocation technique based on re-defined quintic B-splines over Crank-Nicolson is presented to solve the Fisher's type equation. We take three cases of aforesaid equation. The stability analysis and rate of convergence are also done.

Design/methodology/approach

The quintic B-splines are re-defined which are used for space integration. Taylor series expansion is applied for linearization of the nonlinear terms. The discretization of the problem gives up linear system of equations. A Gaussian elimination method is used to solve these systems.

Findings

Three examples are taken for analysis. The analysis gives guarantee that the present method provides much better results than previously presented methods in literature. The stability analysis and rate of convergence show that the method is unconditionally stable and quadratic convergent for Fisher's type equation. Moreover, the present method is simple and easy to implement, so it may be considered as an alternative method to solve PDEs.

Originality/value

This work is the original work of authors which is neither published nor submitted anywhere else for publication.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 22 March 2013

Jalil Rashidinia and Zahra Mahmoodi

The purpose of this paper is to develop a numerical method based on quintic B‐spline to solve the linear and nonlinear Fredholm and Volterra integral equations.

Abstract

Purpose

The purpose of this paper is to develop a numerical method based on quintic B‐spline to solve the linear and nonlinear Fredholm and Volterra integral equations.

Design/methodology/approach

The solution is collocated by quintic B‐spline and then the integral equation is approximated by the Gauss‐Kronrod‐Legendre quadrature formula.

Findings

The arising system of linear or nonlinear algebraic equations can solve the linear combination coefficients appearing in the representation of the solution in spline basic functions.

Practical implications

The error analysis of proposed numerical method is studied theoretically. Numerical results are given to illustrate the efficiency of the proposed method. The results are compared with the results obtained by other methods to verify that this method is accurate and efficient.

Originality/value

The paper provides new method to solve the linear and nonlinear Fredholm and Volterra integral equations.

Article
Publication date: 16 October 2009

Dursun Irk

The purpose of this paper is to investigate the numerical solutions of the Burgers' and modified Burgers' equation using sextic B‐spline collocation method.

Abstract

Purpose

The purpose of this paper is to investigate the numerical solutions of the Burgers' and modified Burgers' equation using sextic B‐spline collocation method.

Design/methodology/approach

Crank‐Nicolson central differencing scheme has been used for the time integration and sextic B‐spline functions have been used for the space integration to the modified and time splitted modified Burgers' equation.

Findings

It has been found that the proposed method is unconditionally stable and obtained results are consistent with some earlier published studies.

Originality/value

Sextic B‐spline collocation method for the Burgers' and modified Burgers' equation is given.

Details

Kybernetes, vol. 38 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 13 June 2020

Tahir Nazir, Muhammad Abbas and Muhammad Kashif Iqbal

The purpose of this paper is to present a new cubic B-spline (CBS) approximation technique for the numerical treatment of coupled viscous Burgers’ equations arising in the study…

Abstract

Purpose

The purpose of this paper is to present a new cubic B-spline (CBS) approximation technique for the numerical treatment of coupled viscous Burgers’ equations arising in the study of fluid dynamics, continuous stochastic processes, acoustic transmissions and aerofoil flow theory.

Design/methodology/approach

The system of partial differential equations is discretized in time direction using the finite difference formulation, and the new CBS approximations have been used to interpolate the solution curves in the spatial direction. The theoretical estimation of stability and uniform convergence of the proposed numerical algorithm has been derived rigorously.

Findings

A different scheme based on the new approximation in CBS functions is proposed which is quite different from the existing methods developed (Mittal and Jiwari, 2012; Mittal and Arora, 2011; Mittal and Tripathi, 2014; Raslan et al., 2017; Shallal et al., 2019). Some numerical examples are presented to validate the performance and accuracy of the proposed technique. The simulation results have guaranteed the superior performance of the presented algorithm over the existing numerical techniques on approximate solutions of coupled viscous Burgers’ equations.

Originality/value

The current approach based on new CBS approximations is novel for the numerical study of coupled Burgers’ equations, and as far as we are aware, it has never been used for this purpose before.

Article
Publication date: 16 May 2016

Xueshan Gao, Yu Mu and Yongzhuo Gao

The purpose of this paper is to propose a method of optimal trajectory planning for robotic manipulators that applies an improved teaching-learning-based optimization (ITLBO…

Abstract

Purpose

The purpose of this paper is to propose a method of optimal trajectory planning for robotic manipulators that applies an improved teaching-learning-based optimization (ITLBO) algorithm.

Design/methodology/approach

The ITLBO algorithm possesses better ability to escape from the local optimum by integrating the original TLBO with variable neighborhood search. The trajectory of robotic manipulators complying with the kinematical constraints is constructed by fifth-order B-spline curves. The objective function to be minimized is execution time of the trajectory.

Findings

Experimental results with a 6-DOF robotic manipulator applied to surface polishing of metallic workpiece verify the effectiveness of the method.

Originality/value

The presented ITLBO algorithm is more efficient than the original TLBO algorithm and its variants. It can be applied to any robotic manipulators to generate time-optimal trajectories.

Details

Industrial Robot: An International Journal, vol. 43 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 January 2019

Dongliang Qi, Dongdong Wang, Like Deng, Xiaolan Xu and Cheng-Tang Wu

Although high-order smooth reproducing kernel mesh-free approximation enables the analysis of structural vibrations in an efficient collocation formulation, there is still a lack…

Abstract

Purpose

Although high-order smooth reproducing kernel mesh-free approximation enables the analysis of structural vibrations in an efficient collocation formulation, there is still a lack of systematic theoretical accuracy assessment for such approach. The purpose of this paper is to present a detailed accuracy analysis for the reproducing kernel mesh-free collocation method regarding structural vibrations.

Design/methodology/approach

Both second-order problems such as one-dimensional (1D) rod and two-dimensional (2D) membrane and fourth-order problems such as Euler–Bernoulli beam and Kirchhoff plate are considered. Staring from a generic equation of motion deduced from the reproducing kernel mesh-free collocation method, a frequency error measure is rationally attained through properly introducing the consistency conditions of reproducing kernel mesh-free shape functions.

Findings

This paper reveals that for the second-order structural vibration problems, the frequency accuracy orders are p and (p − 1) for even and odd degree basis functions; for the fourth-order structural vibration problems, the frequency accuracy orders are (p − 2) and (p − 3) for even and odd degree basis functions, respectively, where p denotes the degree of the basis function used in mesh-free approximation.

Originality/value

A frequency accuracy estimation is achieved for the reproducing kernel mesh-free collocation analysis of structural vibrations, which can effectively underpin the practical applications of this method.

Details

Engineering Computations, vol. 36 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 September 2018

Neeraj Dhiman and Mohammad Tamsir

The purpose of this paper is to present a modified form of trigonometric cubic B-spline (TCB) collocation method to solve nonlinear Fisher’s type equations. Taylor series…

Abstract

Purpose

The purpose of this paper is to present a modified form of trigonometric cubic B-spline (TCB) collocation method to solve nonlinear Fisher’s type equations. Taylor series expansion is used to linearize the nonlinear part of the problem. Five examples are taken for analysis. The obtained results are better than those obtained by some numerical methods as well as exact solutions. It is noted that the modified form of TCB collocation method is an economical and efficient technique to approximate the solution PDEs. The authors also carried out the stability analysis which proves that the method is unconditionally stable.

Design/methodology/approach

The authors present a modified form of TCB collocation method to solve nonlinear Fisher’s type equations. Taylor series expansion is used to linearize the nonlinear part of the problem. The authors also carried out the stability analysis.

Findings

The authors found that the proposed method results are better than those obtained by some numerical methods as well as exact solutions. It is noted that the modified form of TCB collocation method is an economical and efficient technique to approximate the solution PDEs.

Originality/value

The authors propose a new method, namely, modified form of TCB collocation method. In the authors’ best knowledge, aforesaid method is not proposed by any other author. The authors used this method to solve nonlinear Fisher’s type equations and obtained more accurate results than the results obtained by other methods.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 October 2020

Özlem Ersoy Hepson

The purpose of this study is to construct quartic trigonometric tension (QTT) B-spline collocation algorithms for the numerical solutions of the Coupled Burgers’ equation.

Abstract

Purpose

The purpose of this study is to construct quartic trigonometric tension (QTT) B-spline collocation algorithms for the numerical solutions of the Coupled Burgers’ equation.

Design/methodology/approach

The finite elements method (FEM) is a numerical method for obtaining an approximate solution of partial differential equations (PDEs). The development of high-speed computers enables to development FEM to solve PDEs on both complex domain and complicated boundary conditions. It also provides higher-order approximation which consists of a vector of coefficients multiplied by a set of basis functions. FEM with the B-splines is efficient due both to giving a smaller system of algebraic equations that has lower computational complexity and providing higher-order continuous approximation depending on using the B-splines of high degree.

Findings

The result of the test problems indicates the reliability of the method to get solutions to the CBE. QTT B-spline collocation approach has convergence order 3 in space and order 1 in time. So that nonpolynomial splines provide smooth solutions during the run of the program.

Originality/value

There are few numerical methods build-up using the trigonometric tension spline for solving differential equations. The tension B-spline collocation method is used for finding the solution of Coupled Burgers’ equation.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 33