Search results

1 – 10 of 80
Article
Publication date: 14 August 2017

Gang Zhou, Bolun Zhang and Aimee Pasricha

The indentation behaviour of sandwich panels is significant to incipient damage and is known to be affected by a number of dominant parameters. However, it is challenging not only…

Abstract

Purpose

The indentation behaviour of sandwich panels is significant to incipient damage and is known to be affected by a number of dominant parameters. However, it is challenging not only to demonstrate how those few dominant parameters influence the indentation behaviour but also to ascertain that such influence was coupled to the variation of the other dominant parameters. The paper aims to discuss these issues.

Design/methodology/approach

In this work, the authors adopted a controllable quasi-static testing to carry out a diagnostic interrogation on the nature of incipient damage in laminate-skinned sandwich panels using hemispherical indenter and used photographs taken from the cross-sections of all the cut-up tested specimens, which were stopped both just before and after the initial critical loads, respectively, to confirm the mechanism of the incipient damage. Sandwich panels with aluminium honeycomb core had carbon/epoxy skins of two different thicknesses and lay-ups and hemispherical nosed indenter had three different diameters.

Findings

The authors found that: the incipient damage mechanism in all the panels was combined delamination in the skin and core crushing without debonding; doubling the skin thickness had the significant enhancement on critical load and indentation and this enhancement became greater for the larger indenter diameters; the indenter diameter had the moderate effect on critical load in the thick panels from 8 to 14 mm but had the negligible effect on thin panels and no effect on the thick panels from 14 to 20 mm; varying the skin lay-up or support had little effect on the indentation behaviour.

Research limitations/implications

These findings were limited to the constant core density and core thickness. Varying the former significantly could alter the findings accordingly.

Practical implications

The results of this work should be tremendously useful to design and analysis in industrial applications of sandwich structures in aircraft, vehicles, marine vessels and transport carriages for situations involving localised loading and deformation.

Originality/value

The results of this research work is one of the very few that demonstrated a systematic understanding of the indentation behaviour characteristics of sandwich construction, which is vital to the establishment of indentation law for sandwich structures in future.

Details

International Journal of Structural Integrity, vol. 8 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 October 2018

Fahad Almaskari and Farrukh Hafeez

The purpose of this paper is to study the behaviour of glass reinforced epoxy tubes subjected to repeated indentation loads at two non-coincident indentations 180° apart.

Abstract

Purpose

The purpose of this paper is to study the behaviour of glass reinforced epoxy tubes subjected to repeated indentation loads at two non-coincident indentations 180° apart.

Design/methodology/approach

Four geometrically scaled specimens ranging from 100 to 400 mm diameter were used in repeated indentation tests. Force, displacement and damage growth were recorded for loading and unloading until the indenter returned to its original starting point.

Findings

Similar scaled trends were observed between the non-coincidental loadings. Unlike reported response form coincidental loadings, the responses from non-coincidental loadings yield lower values for bending stiffness and peak load.

Research limitations/implications

The differences in behaviour of the specimen between non-coincident loadings were attributed to reductions in fracture toughness and circumferential modulus.

Practical implications

Distant non-interacting damage and delamination around the circumference does reduce the structural performance.

Originality/value

Behaviour of composite tubes under different loading conditions, for example low speed impact or quasi static indentation, is widely studied, however little attention has been given to the repeated loading incidents.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 May 2016

Patryk Adam Jakubczak and Jaroslaw Bienias

The purpose of this paper was to compare the response of selected hybrid Fibre Metal Laminates (FMLs) in the form of glass and carbon fibre aluminium laminates to dynamic and…

Abstract

Purpose

The purpose of this paper was to compare the response of selected hybrid Fibre Metal Laminates (FMLs) in the form of glass and carbon fibre aluminium laminates to dynamic and static loads compared together.

Design/methodology/approach

The subject of examination was FMLs (Al/CFRP and Al/GFRP). The samples were subjected to low-velocity impact and quasi-static indentation. The response of laminates to the both types of loads was evaluated by comparison of force – displacement diagrams including the values of maximum forces as well as the extent and nature of structure degradation as a result of loads.

Findings

In case of Al/GFRP laminates, the analysis of characteristic relations, i.e. force – displacement and the impactor influence area in case of indentation and impact confirmed that certain parameters, i.e. the values of maximum force transferred by laminate, destruction surface area and destruction mechanisms are consistent after static and dynamic tests. Significant differences were found in destruction scale in Al/GFRP laminates despite considerable fitting of force – displacement diagrams to static and dynamic tests. Destruction surface area observed in FML carbon laminates subjected to dynamic loads was significantly smaller than after indentation but perforation area occurring at the unloaded side was much more extensive.

Practical implications

Research issues in the scope of dynamic loads by means of concentrated force in composite materials and interpretation of the effects of their impacts are extremely complex. Therefore, the attempts are made to predict the resistance to dynamic loads by means of concentrated force using statistical research methods. The test results might be useful for the design and simulations of FMLs applications in aerospace.

Originality/value

From the analysis of available literature, it appears that there are no studies exploring the issue of forecasting or comparison the effects of static and dynamic tests for hybrid FMLs. The new hybrid materials like FMLs have different mechanisms of damage initiation and propagation as a result of impact, in comparison to classic composite materials. It means that possibilities of using the static loads to predict impact resistance should be known well for all type of FMLs. Actually, there is no research about static indentation in relation to low-velocity impact of aluminium-carbon laminates. This situation encouraged the authors of the present study to undertake research in this scope. The results can demonstrate and explain why prediction of impact resistance of FMLs by using static indentation is uncertain and not always valuable.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 31 July 2023

Niranjan Chikkanna, Shankar Krishnapillai and Velmurugan Ramachandran

Auxetics are the class of cellular materials with a negative Poisson’s ratio. This paper aims to study the low-cost 3D printing capabilities and printing variations and improve…

Abstract

Purpose

Auxetics are the class of cellular materials with a negative Poisson’s ratio. This paper aims to study the low-cost 3D printing capabilities and printing variations and improve the indentation performance of the re-entrant diamond auxetic metamaterial by tuning the structural parameters that have not been reported.

Design/methodology/approach

The design of experiment strategy was adopted to study the influence of re-entrant angle, diamond angle and thickness-to-length ratio on relative density, load, stiffness and specific energy absorption (SEA) during indentation experimentally. Grey relational analysis was chosen as a multi-objective optimisation technique to optimise structural performance. Surrogate models were proposed to uphold the metamaterial’s tailorability for desired application needs. The fit and efficacy of the proposed models were tested using specific statistical techniques. The predominant deformation mechanisms observed with the alteration in structural parameters were discussed.

Findings

The improvements noticed are 48 times hike in load, 112 times improvement in stiffness and 10 times increase in SEA for optimised structures. The surrogate models are proven to predict the outputs accurately for new input parameters. In-situ displacement fields are visualised with an image processing technique.

Originality/value

To the best of the authors’ knowledge, the indentation performance of the re-entrant diamond auxetic metamaterials has not been reported and reported for the first time. The influence of geometrical parameters on the newly developed structure under concentrated loading was evaluated. The geometry-dependent printing variations associated with 3D printing have been discussed to help the user to fabricate re-entrant diamond auxetic metamaterial.

Article
Publication date: 7 November 2008

Y. Tang, B. Sun, X. Ding and B. Gu

The aim of this paper is to investigate transverse impact behaviour and energy absorption of 3‐D glass/polyester resin cellular woven composite impacted by flat‐ended rod and to…

Abstract

Purpose

The aim of this paper is to investigate transverse impact behaviour and energy absorption of 3‐D glass/polyester resin cellular woven composite impacted by flat‐ended rod and to discuss the failure modes of the composite under quasi‐static and dynamic loading.

Design/methodology/approach

The quasi‐static compression tests were conducted with MTS 810.23 tester. The impact behaviours of the 3‐D cellular woven composite were tested with a modified split Hopkinson pressure bar (SHPB) apparatus.

Findings

Failure loads and energy absorption capacities of the 3‐D cellular woven composite increase as the increase of load speed, i.e. the composite is strain rate sensitive. The failure loads and energy absorptions in warp direction are lower than those in weft direction at the same loading speed because of the lower linear density of warp yarns. The damage morphologies of the 3‐D cellular woven composite manifest the compression failure in the front side and tension failure in rear side.

Research limitations/implications

The influence of different structure parameters on the failure mode should be studied.

Practical implications

The study provided information on the failure mode and energy absorption of the 3‐D cellular woven composite under impulsive loading. This could be used for light weight structure design, such as vehicle and aircraft stringer structures.

Originality/value

Understanding energy absorption of the 3‐D cellular woven composite under transverse impact is much more important than those under quasi‐static loading. This paper provides the results of dynamic mechanical properties of a new kind of 3‐D cellular woven composite under impact loading.

Details

Pigment & Resin Technology, vol. 37 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 January 1992

ZHI‐HUA ZHONG and JAROSLAV MACKERLE

Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite…

Abstract

Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite element method has been widely used to solve contact problems with various grades of complexity. Great progress has been made on both theoretical studies and engineering applications. This paper reviews some of the main developments in contact theories and finite element solution techniques for static contact problems. Classical and variational formulations of the problem are first given and then finite element solution techniques are reviewed. Available constraint methods, friction laws and contact searching algorithms are also briefly described. At the end of the paper, a bibliography is included, listing about seven hundred papers which are related to static contact problems and have been published in various journals and conference proceedings from 1976.

Details

Engineering Computations, vol. 9 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 2004

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element modelling and simulation of indentation testing from the theoretical as well as practical points of view. The…

2056

Abstract

This paper gives a bibliographical review of the finite element modelling and simulation of indentation testing from the theoretical as well as practical points of view. The bibliography lists references to papers, conference proceedings and theses/dissertations that were published between 1990 and 2002. At the end of this paper, 509 references are listed dealing with subjects such as, fundamental relations and modelling in indentation testing, identification of mechanical properties for specific materials, fracture mechanics problems in indentation, scaling relationship for indentation, indenter geometry and indentation testing.

Details

Engineering Computations, vol. 21 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 February 2016

Gabi N Nehme and Saeed Ghalambor

This study aims to examine the effect of the antiwear resistance of plain zinc-dialkyldithiophosphate (ZDDP) oil in the presence of…

179

Abstract

Purpose

This study aims to examine the effect of the antiwear resistance of plain zinc-dialkyldithiophosphate (ZDDP) oil in the presence of Titanium-fluoride/iron-fluoride/polytetrafluoroethylene (TiF3/FeF3/PTFE) in the time to tribofilm breakdown and extent of wear under extreme boundary lubrication using a contact load of 317 Newton and a rotational speed of 700 rpm to simulate the cold start of a car engine. The mechanism of tribofilm formation and breakdown was followed carefully by monitoring the friction coefficient for different surface roughnesses over the duration of several reproducible tests that were performed in a ball on cylinder tribometer.

Design/methodology/approach

The heating time of the cylinder dipped in the specified lubricant blend then set for one minute before testing and the break in period of 2 minutes to cool the contacting metal to metal surfaces during tribological testing played important roles in minimizing friction and wear, and are directly proportional to the durability and time for breakdown of the tribofilm. This article addresses the improvement of water drop contact angles for different surfaces during heat treatment and the tribological enhancement of antiwear additives when optimum concentration of fluorinated catalysts and PTFE is used in connection with reduced surface roughness and break in period.

Findings

Design of Experiment software, scanning electron microscopy, energy dispersive spectroscopy and nanoindentation were used in this study to evaluate the antiwear resistance films when using 0.05 per cent phosphorus ZDDP plain oil with 0.5 weight per cent TiF3 + 0.5 weight per cent FeF3 + 2 weight per cent PTFE and when applying 2 minutes break in time to cool down the contacting bodies when temperature rises. Results indicated that the coated film on the thermally treated surfaces that is reflected as white patches on the SEM images is a function of the antiwear additives contribution; it is also shown to have positive influence on the friction and wear performances during tribological testing.

Originality/value

This research involved the study of lubricant and surface interactions with antiwear additives under boundary lubrication and extreme pressure loading. Several researchers studied these effects and submitted articles to the journal. This is the first time that a break in period was used with surface conditions to simulate car stops in heavy traffic conditions.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 July 2023

Mehdi Ranjbar-Roeintan

The purpose of this study is to investigate the strain rate effect on the problem of low-velocity impact (LVI) on a beam, including silicon nitride and stainless steel materials.

Abstract

Purpose

The purpose of this study is to investigate the strain rate effect on the problem of low-velocity impact (LVI) on a beam, including silicon nitride and stainless steel materials.

Design/methodology/approach

Based on the nonlinear Hertz impact mechanism, the energies related to the impactor and the beam are written, and motion equations are derived using the Lagrangian mechanics and Ritz method. The strain rate term is represented as a damping matrix in the equations of motion. In the issue of LVI on the silicon nitride and stainless steel beam, the effect of internal viscous damping coefficient in simply–simply and clamped–free boundary conditions are studied. Also, the influence of the volume fraction index in the range between zero and one and greater than one on the impact response is investigated.

Findings

The results make it clear that the strain rate parameter had little effect on the response in LVI. Also, an increase in the volume fraction index has led to a decrease in the contact force and an increase in the rebound velocity of the impactor.

Originality/value

The effect of strain rate on LVI is theoretically studied in this paper, while in most of the papers, this effect is investigated experimentally and numerically.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Content available
Article
Publication date: 3 May 2016

449

Abstract

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 3
Type: Research Article
ISSN: 1748-8842

1 – 10 of 80