Search results

1 – 10 of 72
Article
Publication date: 24 February 2012

Juha Kuutti and Kari Kolari

The purpose of this paper is to present a new simplified local remeshing procedure for the study of discrete crack propagation in finite element (FE) mesh. The proposed technique…

Abstract

Purpose

The purpose of this paper is to present a new simplified local remeshing procedure for the study of discrete crack propagation in finite element (FE) mesh. The proposed technique accounts for the generation and propagation of crack‐like failure within an FE‐model. Beside crack propagation, the technique enables the analysis of fragmentation of initially intact continuum. The capability of modelling fragmentation is essential in various structure‐structure interaction analyses such as projectile impact analysis and ice‐structure interaction analysis.

Design/methodology/approach

The procedure combines continuum damage mechanics (CDM), fictitious crack approach and a new local remeshing procedure. In the approach a fictitious crack is replaced by a discrete crack by applying delete‐and‐fill local remeshing. The proposed method is independent of mesh topology unlike the traditional discrete crack approach. The procedure is implemented for 3‐D solid elements in commercial finite element software Abaqus/Explicit using Python scripting. The procedure is completely automated, such that crack initiation and propagation analyses do not require user intervention. A relatively simple constitutive model was implemented strictly for demonstrative purposes.

Findings

Well known examples were simulated to verify the applicability of the method. The simulations revealed the capabilities of the method and reasonable correspondence with reference results was obtained. Material fragmentation was successfully simulated in ice‐structure interaction analysis.

Originality/value

The procedure for modelling discrete crack propagation and fragmentation of initially intact quasi‐brittle materials based on local remeshing has not been presented previously. The procedure is well suited for simulation of fragmentation and is implemented in a commercial FE‐software.

Article
Publication date: 22 February 2013

Francisco Montero‐Chacón and Fernando Medina

The purpose of this paper is to determine the representative volume element (RVE) size for quasi‐brittle materials using a discrete approach, namely a lattice‐particle model.

Abstract

Purpose

The purpose of this paper is to determine the representative volume element (RVE) size for quasi‐brittle materials using a discrete approach, namely a lattice‐particle model.

Design/methodology/approach

Different material samples are generated and subjected to study regarding its size, maximum aggregate size and boundary conditions. In order to determine the mechanical properties such as the elastic modulus, Poisson's ratio or tensile strength, several tension tests are carried out. For this purpose, a lattice‐particle approach is used to model concrete's fracturing behavior. The information provided by the previous simulations is implemented in a statistical analysis to determine the size of the RVE.

Findings

The determination of the RVE size for quasi‐brittle materials is successfully achieved by means of a lattice‐particle model. Computed results show a good agreement with other results reported in the bibliography.

Originality/value

Within a general multiscale framework, the determination of the RVE size is of great interest and some studies have been performed for random heterogeneous materials. However, these analyses are mainly continuum‐based. The estimation of the RVE size is important for correctly predicting the mechanical properties and can be used in different multiscale schemes.

Article
Publication date: 27 January 2021

Angel Rawat, Raghu Piska, A. Rajagopal and Mokarram Hossain

This paper aims to present a nonlocal gradient plasticity damage model to demonstrate the crack pattern of a body, in an elastic and plastic state, in terms of damage law. The…

Abstract

Purpose

This paper aims to present a nonlocal gradient plasticity damage model to demonstrate the crack pattern of a body, in an elastic and plastic state, in terms of damage law. The main objective of this paper is to reconsider the nonlocal theory by including the material in-homogeneity caused by damage and plasticity. The nonlocal nature of the strain field provides a regularization to overcome the analytical and computational problems induced by softening constitutive laws. Such an approach requires C1 continuous approximation. This is achieved by using an isogeometric approximation (IGA). Numerical examples in one and two dimensions are presented.

Design/methodology/approach

In this work, the authors propose a nonlocal elastic plastic damage model. The nonlocal nature of the strain field provides a regularization to overcome the analytical and computational problems induced by softening constitutive laws. An additive decomposition of strains in to elastic and inelastic or plastic part is considered. To obtain stable damage, a higher gradient order is considered for an integral equation, which is obtained by the Taylor series expansion of the local inelastic strain around the point under consideration. The higher-order continuity of nonuniform rational B-splines (NURBS) functions used in isogeometric analysis are adopted here to implement in a numerical scheme. To demonstrate the validity of the proposed model, numerical examples in one and two dimensions are presented.

Findings

The proposed nonlocal elastic plastic damage model is able to predict the damage in an accurate manner. The numerical results are mesh independent. The nonlocal terms add a regularization to the model especially for strain softening type of materials. The consideration of nonlocality in inelastic strains is more meaningful to the physics of damage. The use of IGA framework and NURBS basis functions add to the nonlocal nature in approximations of the field variables.

Research limitations/implications

The method can be extended to 3D. The model does not consider the effect of temperature and the dissipation of energy due to temperature. The method needs to be implemented for more real practical problems and compare with experimental work. This is an ongoing work.

Practical implications

The nonlocal models are suitable for predicting damage in quasi brittle materials. The use of elastic plastic theories allows to capture the inelastic deformations more accurately.

Social implications

The nonlocal models are suitable for predicting damage in quasi brittle materials. The use of elastic plastic theories allows to capture the inelastic deformations more accurately.

Originality/value

The present work includes the formulation and implementation of a nonlocal damage plasticity model using an isogeometric discretization, which is the novel contribution of this paper. An implicit gradient enhancement is considered to the inelastic strain. During inelastic deformations, the proposed strain tensor partitioning allows the use of a distinct potential surface and distinct failure criterion for both damage and plasticity models. The use of NURBS basis functions adds to more nonlocality in the approximation.

Details

Engineering Computations, vol. 38 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2006

J. Pina‐Henriques and Paulo B. Lourenço

To contribute for a reliable estimation of the compressive strength of unreinforced masonry from the properties of the constituents (units and mortar).

1831

Abstract

Purpose

To contribute for a reliable estimation of the compressive strength of unreinforced masonry from the properties of the constituents (units and mortar).

Design/methodology/approach

Sophisticated non‐linear continuum models, based on damage, plasticity, cracking or other formulation, are today standard in several finite element programs. The adequacy of such models to provide reliable estimates of masonry compressive strength, from the properties of the constituents, remains unresolved. The authors have shown recently that continuum models might significantly overestimate the prediction of the compressive strength. Hence, an alternative phenomenological approach developed in a discrete framework is proposed, based on attributing to masonry components a fictitious micro‐structure composed of linear elastic particles separated by non‐linear interface elements. The model is discussed in detail and a comparison with experimental results and numerical results using a standard continuum model is provided.

Findings

Clear advantages in terms of compressive strength and peak strain prediction were found using the particle model when compared with standard continuum models. Moreover, compressive and tensile strength values provided by the model were found to be particle size‐ and particle distortion‐independent for practical purposes. It is also noted that size‐dependent responses were obtained and that shear parameters rather than tensile parameters were found to play a major role at the meso‐level of the phenomenological model.

Originality/value

This paper provides further insight into the compressive behaviour of quasi‐brittle materials, with an emphasis on the strength prediction of masonry composites. Reliable prediction of masonry strength is of great use in the civil engineering field, allowing one to reduce experimental testing in expensive wallets and to avoid the usage of conservative empirical formulae.

Details

Engineering Computations, vol. 23 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2003

M.G. Cottrell, J. Yu, Z.J. Wei and D.R.J. Owen

In recent years, developments in the field of lightweight armour have been of primary importance to the defence industry. This necessity has led to many organisations adopting…

Abstract

In recent years, developments in the field of lightweight armour have been of primary importance to the defence industry. This necessity has led to many organisations adopting composite armours comprising both the traditional heavy armours and new lighter weight ceramic armours. The numerical modelling of metal based armour systems has been well documented over the years using purely continuum based methods; and also the modelling of brittle systems using discrete element methods, therefore it is the objective of this paper to demonstrate how a coupled finite and discrete element approach, can be used in the further understanding of the quantitative response of ceramic systems when subjected to dynamic loadings using a combination of adaptive continuum techniques and discrete element methods. For the class of problems encountered within the defence industry, numerical modelling has suffered from one principal weakness; for many applications the associated deformed finite element mesh can no longer provide an accurate description of the deformed material, whether this is due to large ductile deformation, or for the case of brittle materials, degradation into multiple bodies. Subsequently, two very different approaches have been developed to combat such deficiencies, namely the use of adaptive remeshing for the ductile type materials and a discrete fracture insertion scheme for the modelling of material degradation. Therefore, one of the primary objectives of this paper is to present examples demonstrating the potential benefits of explicitly coupling adaptive remeshing methods to the technique of discrete fracture insertion in order to provide an adaptive discontinuous solution strategy, which is computationally robust and efficient.

Details

Engineering Computations, vol. 20 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 August 2019

Fatemeh FaghihKhorasani, Mohammad Zaman Kabir, Mehdi AhmadiNajafabad and Khosrow Ghavami

The purpose of this paper is to provide a method to predict the situation of a loaded element in the compressive stress curve to prevent failure of crucial elements in…

Abstract

Purpose

The purpose of this paper is to provide a method to predict the situation of a loaded element in the compressive stress curve to prevent failure of crucial elements in load-bearing masonry walls and to propose a material model to simulate a compressive element successfully in Abaqus software to study the structural safety by using non-linear finite element analysis.

Design/methodology/approach

A Weibull distribution function was rewritten to relate between failure probability function and axial strain during uniaxial compressive loading. Weibull distribution parameters (shape and scale parameters) were defined by detected acoustic emission (AE) events with a linear regression. It was shown that the shape parameter of Weibull distribution was able to illustrate the effects of the added fibers on increasing or decreasing the specimens’ brittleness. Since both Weibull function and compressive stress are functions of compressive strain, a relation between compressive stress and normalized cumulative AE hits was calculated when the compressive strain was available. By suggested procedures, it was possible to monitor pretested plain or random distributed short fibers reinforced adobe elements (with AE sensor and strain detector) in a masonry building under uniaxial compression loading to predict the situation of element in the compressive stress‒strain curve, hence predicting the time to element collapse by an AE sensor and a strain detector. In the predicted compressive stress‒strain curve, the peak stress and its corresponding strain, the stress and strain point with maximum elastic modulus and the maximum elastic modulus were predicted successfully. With a proposed material model, it was illustrated that the needed parameters for simulating a specimen in Abaqus software with concrete damage plasticity were peak stress and its corresponding strain, the stress and strain point with maximum elastic modulus and the maximum elastic modulus.

Findings

The AE cumulative hits versus strain plots corresponding to the stress‒strain curves can be divided into four stages: inactivity period, discontinuous growth period, continuous growth period and constant period, which can predict the densifying, linear, non-linear and residual stress part of the stress‒strain relationship. By supposing that the relation between cumulative AE hits and compressive strain complies with a Weibull distribution function, a linear analysis was conducted to calibrate the parameters of Weibull distribution by AE cumulative hits for predicting the failure probability as a function of compressive strain. Parameters of m and θ were able to predict the brittleness of the plain and tire fibers reinforced adobe elements successfully. The calibrated failure probability function showed sufficient representation of the cumulative AE hit curve. A mathematical model for the stress–strain relationship prediction of the specimens after detecting the first AE hit was developed by the relationship between compressive stress versus the Weibull failure probability function, which was validated against the experimental data and gave good predictions for both plain and short fibers reinforced adobe specimens. Then, the authors were able to monitor and predict the situation of an element in the compressive stress‒strain curve, hence predicting the time to its collapse for pretested plain or random distributed short fibers reinforced adobe (with AE sensor and strain detector) in a masonry building under uniaxial compression loading by an AE sensor and a strain detector. The proposed model was successfully able to predict the main mechanical properties of different adobe specimens which are necessary for material modeling with concrete damage plasticity in Abaqus. These properties include peak compressive strength and its corresponding axial strain, the compressive strength and its corresponding axial strain at the point with maximum compressive Young’s modulus and the maximum compressive Young’s modulus.

Research limitations/implications

The authors were not able to decide about the effects of the specimens’ shape, as only cubic specimens were chosen; by testing different shape and different size specimens, the authors would be able to generalize the results.

Practical implications

The paper includes implications for monitoring techniques and predicting the time to the collapse of pretested elements (with AE sensor and strain detector) in a masonry structure.

Originality/value

This paper proposes a new method to monitor and predict the situation of a loaded element in the compressive stress‒strain curve, hence predicting the time to its collapse for pretested plain or random distributed short fibers reinforced adobe (with AE sensor and strain detector) in a masonry building under uniaxial compression load by an AE sensor and a strain detector.

Article
Publication date: 1 May 2001

D.R.J. Owen and Y.T. Feng

This paper outlines a dynamic domain decomposition‐based parallel strategy for combined finite/discrete element analysis of multi‐fracturing solids and discrete systems. Attention…

1480

Abstract

This paper outlines a dynamic domain decomposition‐based parallel strategy for combined finite/discrete element analysis of multi‐fracturing solids and discrete systems. Attention is focused on the parallelised interaction detection between discrete objects. Two graph representation models for discrete objects in contact are proposed which lay the foundation of the current development. In addition, a load imbalance detection and re‐balancing scheme is also suggested to enhance the parallel performance. Finally, numerical examples are provided to illustrate the parallel performance achieved with the current implementation.

Details

Engineering Computations, vol. 18 no. 3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 September 2021

Bruna Caroline Campos, Felicio Bruzzi Barros and Samuel Silva Penna

The aim of this paper is to present a novel data transfer technique to simulate, by G/XFEM, a cohesive crack propagation coupled with a smeared damage model. The efficiency of…

Abstract

Purpose

The aim of this paper is to present a novel data transfer technique to simulate, by G/XFEM, a cohesive crack propagation coupled with a smeared damage model. The efficiency of this technique is evaluated in terms of processing time, number of Newton–Raphson iterations and accuracy of structural response.

Design/methodology/approach

The cohesive crack is represented by the G/XFEM enrichment strategy. The elements crossed by the crack are divided into triangular cells. The smeared crack model is used to describe the material behavior. In the nonlinear solution of the problem, state variables associated with the original numerical integration points need to be transferred to new points created with the triangular subdivision. A nonlocal strategy is tailored to transfer the scalar and tensor variables of the constitutive model. The performance of this technique is numerically evaluated.

Findings

When compared with standard Gauss quadrature integration scheme, the proposed strategy may deliver a slightly superior computational efficiency in terms of processing time. The weighting function parameter used in the nonlocal transfer strategy plays an important role. The equilibrium state in the interactive-incremental solution process is not severely penalized and is readily recovered. The advantages of such proposed technique tend to be even more pronounced in more complex and finer meshes.

Originality/value

This work presents a novel data transfer technique based on the ideas of the nonlocal formulation of the state variables and specially tailored to the simulation of cohesive crack propagation in materials governed by the smeared crack constitutive model.

Article
Publication date: 4 June 2021

Jike Han, Bo Yin, Michael Kaliske and Kenjiro Tarada

This study aims to develop a new analysis approach devised by incorporating a gradient-enhanced microplane damage model (GeMpDM) into isogeometric analysis (IGA), which shows…

204

Abstract

Purpose

This study aims to develop a new analysis approach devised by incorporating a gradient-enhanced microplane damage model (GeMpDM) into isogeometric analysis (IGA), which shows computational stability and capability in accurately predicting crack propagations in structures with complex geometries.

Design/methodology/approach

For the non-local microplane damage modeling, the maximum modified von-Mises equivalent strain among all microplanes is regularized as a representative quantity. This characterization implies that only one additional governing equation is considered, which improves computational efficiency dramatically. By combined use of GeMpDM and IGA, quasi-static and dynamic numerical analyses are conducted to demonstrate the capability in predicting crack paths of complex geometries in comparison to FEM and experimental results.

Findings

The implicit scheme with the adopted damage model shows favorable numerical stability and the numerical results exhibit appropriate convergence characteristics concerning the mesh size. The damage evolution is successfully controlled by a tension-compression damage factor. Thanks to the advanced geometric design capability of IGA, the details of crack patterns can be predicted reliably, which are somewhat difficult to be acquired by FEM. Additionally, the damage distribution obtained in the dynamic analysis is in close agreement with experimental results.

Originality/value

The paper originally incorporates GeMpDM into IGA. Especially, only one non-local variable is considered besides the displacement field, which improves the computational efficiency and favorable convergence characteristics within the IGA framework. Also, enjoying the geometric design ability of IGA, the proposed analysis method is capable of accurately predicting crack paths reflecting the complex geometries of target structures.

Details

Engineering Computations, vol. 38 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 October 2020

Yijiang Peng, Zhenghao Wu, Liping Ying and Desi Yang

This paper aims to propose the five-phase sphere equivalent model of recycled concrete, which can be used to deduce the theoretical formulas for the Poisson’s ratio and effective…

Abstract

Purpose

This paper aims to propose the five-phase sphere equivalent model of recycled concrete, which can be used to deduce the theoretical formulas for the Poisson’s ratio and effective elastic modulus.

Design/methodology/approach

At a mesoscopic level, the equivalent model converts the interfacial layer, which consists of the new interfacial transition zone (ITZ), the old mortar and the old (ITZ), into a uniform equivalent medium. This paper deduces a strength expression for the interfacial transition zone at the microscopic level using the equivalent model and elastic theory. In addition, a new finite element method called the base force element method was used in this research.

Findings

Through numerical simulation, it was found that the mechanical property results from the five-phase sphere equivalent model were in good agreement with those of the random aggregate model. Furthermore, the proposed model agree on quite well with the available experimental data.

Originality/value

The equivalent model can eliminate the influence of the interfacial layer on the macroscopic mechanical properties, thereby improving the calculation accuracy and computational efficiency. The proposed model can also provide a suitable model for multi-scale calculations.

1 – 10 of 72