Search results

1 – 10 of 14
Article
Publication date: 26 January 2022

The-Quan Nguyen, Eric C.W. Lou and Bao Ngoc Nguyen

This paper aims to provide an integrated BIM-based approach for quantity take-off for progress payments in the context of high-rise buildings in Vietnam. It tries to find answers…

Abstract

Purpose

This paper aims to provide an integrated BIM-based approach for quantity take-off for progress payments in the context of high-rise buildings in Vietnam. It tries to find answers for the following questions: (1) When to start the QTO processes to facilitate the contract progress payments? (2) What information is required to measure the quantity of works to estimate contract progress payment (3) What are the challenges to manage (i.e. create, store, update and exploit)? What are the required information for this BIM use? and (4) How to process the information to deliver BIM-based QTO to facilitate contract progress payment?

Design/methodology/approach

The paper applied a deductive approach and expert consensus through a Delphi procedure to adapt to current innovation around BIM-based QTO. Starting with a literature review, it then discusses current practices in BIM-based QTO in general and high-rise building projects in particular. Challenges were compiled from the previous studies for references for BIM-based QTO to facilitate contract progress payment for high-rise building projects in Vietnam. A framework was developed considering a standard information management process throughout the construction lifecycle, when the BIM use of this study is delivered. The framework was validated with Delphi technique.

Findings

Four major challenges for BIM-based QTO discovered: new types of information required for the BIM model, changes and updates as projects progress, low interoperability between BIM model and estimation software, potentiality of low productivity and accuracy in data entry. Required information for QTO to facilitate progress payments in high-rise building projects include Object Geometric/Appearance Information, Structural Components' Definition and Contextual Information. Trade-offs between “Speed – Level of Detail–Applicable Breadth” and “Quality – Productivity” are proposed to consider the information amount to input at a time when creating/updating BIM objects. Interoperability check needed for creating, authoring/updating processing the BIM model's objects.

Research limitations/implications

This paper is not flawless. The first limitation lies in that the theoretical framework was established only based on desk research and small number of expert judgment. Further primary data collection would be needed to determine exactly how the framework underlies widespread practices. Secondly, this study only discussed the quantity take-off specifically for contract progress payment, but not for other purposes or broader BIM uses. Further research in this field would be of great help in developing a standard protocol for automatic quantity surveying system in Vietnam.

Originality/value

A new theoretical framework for BIM-based QTO validated with Delphi technique to facilitate progress payments for high-rise building projects, considering all information management stages and the phases of information development in the project lifecycle. The framework identified four types of information required for this QTO, detailed considerations for strategies (Library Objects Development, BIM Objects Information Declaration, BIM-based QTO) for better managing the information for this BIM use. Two trade-offs of “Speed – LOD–Applicable Breadth” and “Quality – Productivity” have been proposed for facilitating the strategies and also for enhancing the total efficiency and effectiveness of the QTO process.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 22 September 2022

Michael C.P. Sing, Sophie, Y.Y. Luk, Ken H.C. Chan, Henry J. Liu and Richard Humphrey

In Hong Kong, over 20,000 private residential buildings will be 50 plus years old by 2039. However, building maintenance has not been owners’ popular interest because of the high…

Abstract

Purpose

In Hong Kong, over 20,000 private residential buildings will be 50 plus years old by 2039. However, building maintenance has not been owners’ popular interest because of the high cost as well as the complexities in justifying whether the quantities and prices of the maintenance works are reasonable. This paper therefore aims to validate the practicality of adopting Scan-to-BIM: Terrestrial Laser Scan (TLS) and Building Information Modelling (BIM) to perform quantity take-offs (QTO) for estimating building maintenance costs.

Design/methodology/approach

A 64-year-old tenement building was selected to conduct a case study. In this instance, the building had undergone a Scan-to-BIM survey approach to generate QTO for the bills of quantities for external painting works. The Scan-to-BIM approach includes site visit, positioning of scanning equipment, assignment of circular scan routes, point cloud registration and identification of residual error. After that, time, cost and quality data were logged into contrast with QTO on as-built plans for external wall plastering works.

Findings

The “time”, “cost” and “quality” of the Scan-to BIM practice were then examined and compared with the prevailing practices of manual measurements on as-built drawings. As noted from the results, the initial cost of Scan-to BIM is high, owing to the cost of equipment, software and capable available operators. However, the authors identified that the time and cost can be significantly minimised by developing and implementing efficient practices such as preparing a detailed scan plan, equipping modeller with quantity surveying knowledge, using automated object recognition and 5D BIM software packages such as Vico Office and CostX.

Practical implications

The upshot is that Scan-to-BIM could be one of the measures to advance the clarity in the QTO and estimated price of the maintenance projects.

Originality/value

The practicability of Scan-to-BIM has received limited attention on existing building maintenance project. The Scan-to-BIM approach was examined using a case building of a 64-year-old tenement building. The approach demonstrated in this research study is promised to advance the clarity in the QTO and estimated price of maintenance project.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 December 2020

Abdulwahed Fazeli, Mohammad Saleh Dashti, Farzad Jalaei and Mostafa Khanzadi

Analyzing different scenarios at the design stage of construction projects has always been a challenging task. One of the main parameters that helps owners in making better…

2459

Abstract

Purpose

Analyzing different scenarios at the design stage of construction projects has always been a challenging task. One of the main parameters that helps owners in making better decisions in designing their buildings is to look after the cost perspective on different design scenarios. Thus, this study aims to propose a semi-automated BIM-based cost estimation approach that enables practitioners to estimate the cost of projects based on different design scenarios by an accurate and agile system.

Design/methodology/approach

This study proposes an integrated framework, through which the cost estimation standard of Iran (FehrestBaha) is linked to the materials quantity take-offs (QTO) from BIM models. The performance of the system is based on connecting the classification standards of UniFormat and MasterFormat to the cost estimation standard of FehrestBaha. A BIM-based extension in the Revit environment is developed to automate the cost estimation process.

Findings

To evaluate the efficiency of the proposed approach in cost estimation, it is implemented to estimate the cost of the architectural discipline in a real construction project. The results indicate that the proposed BIM-based approach estimated the cost of the architectural discipline with an acceptable level of accuracy.

Practical implications

The proposed approach could be used by practitioners to have an agile and accurate BIM-based cost estimation of different scenarios during design process. The semi-automated system considerably reduces the time of cost estimation in comparison to the traditional manual approaches, particularly in complex structures. Owners are able to easily trace changes in project cost according to any changes in components and materials of the BIM model. Furthermore, the proposed approach provides a practical roadmap for BIM-based cost estimation based on cost estimation standards in different countries.

Originality/value

Unlike the traditional manual cost estimation approaches, the proposed BIM-based approach is not highly dependent on the knowledge of experienced estimators, which therefore facilitates its implementation. Furthermore, automating both QTO process and the required calculations in this approach increases the accuracy of cost estimation while decreasing the probability of human errors or omission occurrence.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 November 2019

Solomon Olusola Babatunde, Srinath Perera, Damilola Ekundayo and Tolulope Esther Adeleye

Although studies have shown the relevance of building information modeling (BIM) in cost estimating process, efforts at investigating BIM based detailed cost estimating among…

3212

Abstract

Purpose

Although studies have shown the relevance of building information modeling (BIM) in cost estimating process, efforts at investigating BIM based detailed cost estimating among professional quantity surveyors through quantitative approach are scanty. The purpose of this study is to identify and examine the usage of BIM-based detailed cost estimating software and assesses the drivers to BIM adoption within the Nigerian quantity surveying consulting firms.

Design/methodology/approach

A comprehensive literature review, pilot study and questionnaire survey were adopted. The survey targeted both the BIM users and non- BIM users’ quantity surveying consulting firms in Lagos, Nigeria. The data collected were analyzed using frequency, percentage, mean score, standard deviation, Mann–Whitney test and factor analysis.

Findings

The study found that 46.58 per cent of quantity surveying consulting firms are aware of BIM and have adopted it for detailed cost estimating, while 49.32 per cent of quantity surveying consulting firms are aware but have not adopted BIM-based detailed cost estimating, and 4.10 per cent of quantity surveying consulting firms are not aware at all. Also, the study identified various BIM-based detailed cost estimating software used in quantity surveying practices and found that Microsoft Excel is often used alongside 3D software, Autodesk QTO, Navisworks, Innovaya Composer and CostX are prevalent BIM software used for detailed cost estimating. In addition, the study identified 21 drivers to the adoption of BIM in quantity surveying practices. The result of factor analysis grouped the 21 identified drivers into five principal factors: improved whole lifecycle/design quality, enhanced decision and visualization, cost and time saving, marketing and support for quantity surveyor tasks and government and client pressure.

Practical implications

This study provides significant insight into the application of BIM to quantity surveying consulting practices, thereby enabling consultant quantity surveyors to make informed decisions to select BIM cost estimating software to suit their practices. Further, the study findings can be useful for individuals’, clients’ and contractors’ quantity surveyors to be fully aware of the opportunities BIM could bring in relation to their service delivery.

Originality/value

Accurate cost estimating, effective cost monitoring and control are essential elements to a construction project success. This study further emphasized the importance of BIM to quantity surveying practices, particularly in the area of the detailed cost estimating.

Details

Journal of Financial Management of Property and Construction , vol. 25 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 6 March 2023

Ningshuang Zeng, Xuling Ye, Yan Liu and Markus König

The unstable labor productivity and periodic planning method cause barriers to improving construction logistics management. This paper aims to explore a demand-driven mechanism…

Abstract

Purpose

The unstable labor productivity and periodic planning method cause barriers to improving construction logistics management. This paper aims to explore a demand-driven mechanism for efficient construction logistics planning to record the material consumption, report the real-time demand and trigger material replenishment from off-site to on-site, which is aided by Building Information Modeling (BIM) and the Kanban technique.

Design/methodology/approach

This paper follows the design science research (DSR) principles to propose a system of designing and applying Kanban batch with 4D BIM for construction logistics planning and monitoring. Prototype development with comparative simulation experiments of a river remediation project is conducted to analyze the conventional and Kanban-triggered supply. Two-staged industrial interviews are conducted to guide and evaluate the system design.

Findings

The proposed BIM-enabled Kanban system enables construction managers and suppliers to better set integrated on- and off-site targets, report real-time demands and conduct collaborative planning and monitoring. The simulation results present significant site storage and schedule savings applying the BIM-enabled Kanban system. Feedback and constructive suggestions from practitioners are collected via interviews and analyzed for further development.

Originality/value

This paper brings to the limelight the benefits of implementing BIM-enabled demand-driven replenishment to remove waste from the material flow. This paper combines lean production theory with advanced information technology to solve construction logistics management problems.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 May 2020

Tochukwu Moses, David Heesom and David Oloke

The purpose of this paper is to report on primary research findings that sought to investigate and analyse salient issues on the implementation of 5D building information…

2867

Abstract

Purpose

The purpose of this paper is to report on primary research findings that sought to investigate and analyse salient issues on the implementation of 5D building information modelling (BIM) from the UK contractors’ perspective. Previous research and efforts have predominantly focussed on the use of technologies for cost estimation and quantity takeoff within a more traditional-led procurement, with a paucity of research focussing on how 5D BIM could facilitate costing within contractor-led procurement. This study fills this current knowledge gap and enhances the understanding of the specific costing challenges faced by contractors in contractor-led projects, leading to the development of 5D framework for use in future projects.

Design/methodology/approach

To develop a fully detailed understanding of the challenges and issues being faced in this regard, a phenomenological, qualitative-based study was undertaken through interviews involving 21 participants from UK-wide construction organisations. A thematic data analytical process was applied to the data to derive key issues, and this was then used to inform the development of a 5D-BIM costing framework.

Findings

Multi-disciplinary findings reveal a range of issues faced by contractors when implementing 5D BIM. These exist at strategic, operational and technological levels which require addressing successful implementation of 5D BIM on contractor-led projects adhering to Level 2 BIM standards. These findings cut across the range of stakeholders on contractor-led projects. Ultimately, the findings suggest strong commitment and leadership from organisational management are required to facilitate cost savings and generate accurate cost information.

Practical implications

This study highlights key issues for any party seeking to effectively deploy 5D BIM on a contractor-led construction project. A considerable cultural shift towards automating and digitising cost functions virtually, stronger collaborative working relationship relative to costing in design development, construction practice, maintenance and operation is required.

Originality/value

By analysing findings from primary research data, the work concludes with the development of a 5D BIM costing framework to support contractor-led projects which can be implemented to ensure that 5D BIM is successfully implemented.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 15 November 2018

Hao Zhou and Ehsan Rezazadeh Azar

Steel and reinforced concrete are among the most common structural materials used in the construction industry. Cost and the speed of construction have been usually the main…

Abstract

Purpose

Steel and reinforced concrete are among the most common structural materials used in the construction industry. Cost and the speed of construction have been usually the main criteria when selecting a building’s structural system, whereby the environmental impact of the structural material is sometimes ignored. Availability of an easy-to-use tool for environmental assessment of the structural alternatives could encourage this evaluation in the decision making. The purpose of this paper is to introduce an automated tool for the environmental assessment of the on-site construction processes of a building structural system, which calculates the energy consumption and carbon emissions of the structural system as a parameter for comparison.

Design/methodology/approach

This assessment tool is implemented using a building information modeling (BIM) platform to extract structural elements and their key attributes, such as type, geometrical and locational data. These data are processed together with a productivity database to calculate machine hours, and then predefined energy and carbon inventories are used to assess the energy consumption of the structural system in the erection/installation stage.

Findings

This assessment tool provides an automated and easy-to-use approach to estimate energy consumption and carbon emissions of different structural systems that are modeled in a BIM platform. The results of this tool were within the ranges reported by the available studies.

Originality/value

This research project presents a novel approach to use BIM-based attributes of the structural elements to calculate the required efforts, i.e. machine hours, and assess their energy consumption and carbon emissions during construction processes.

Details

Built Environment Project and Asset Management, vol. 9 no. 1
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 2 February 2024

Mojdeh Naderi, Ahad Nazari, Ali Shafaat and Sepehr Abrishami

This study addresses the prevailing complexities and limitations in estimating and managing construction overhead costs (COCs) in the existing literature, with the purpose of…

Abstract

Purpose

This study addresses the prevailing complexities and limitations in estimating and managing construction overhead costs (COCs) in the existing literature, with the purpose of enhancing the accuracy of cost performance indicators in construction project management.

Design/methodology/approach

An innovative approach is proposed, employing the activity-based costing (ABC) accounting method combined with building information modelling (BIM) to assign real overhead costs to project activities. This study, distinguished by its incorporation of a real case study, focuses on an administrative building with a four-story concrete structure. It establishes an automated method for evaluating project cost performance through the detailed analysis of earned value management (EVM) cost indicators derived from ABC results and BIM data.

Findings

The results show that the ABC integration improves the accuracy of cost performance indicators by over 9%, revealing the project's true cost index for the first time and demonstrating the substantial value of the approach in construction engineering and management.

Research limitations/implications

The current study highlights a notable gap in the existing literature, addressing the challenges in onsite overhead cost estimation and offering a solution that incorporates the state-of-the-art techniques.

Practical implications

The proposed method has significant implications for project managers and practitioners, enabling better-informed decisions based on precise cost data, ultimately leading to enhanced project outcomes.

Originality/value

This research uniquely combines ABC and BIM, presenting a pioneering solution for the accurate estimation and management of COCs in construction projects, adding significant value to the current body of knowledge in this field.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 19 December 2019

Raif Alshorafa and Esin Ergen

Proper definition of level of development (LOD) is one of the significant issues in building information modeling (BIM) applications; however, it is still not adequately addressed…

1340

Abstract

Purpose

Proper definition of level of development (LOD) is one of the significant issues in building information modeling (BIM) applications; however, it is still not adequately addressed during BIM implementations. The purpose of this paper is to investigate and describe the current practice in defining the LOD in large-scale BIM-based projects and identify the challenges and solutions that were provided.

Design/methodology/approach

Four case studies were performed at four different types of large-scale projects to depict the current practice in determining the LOD and the required properties of elements that are going to be included in a BIM model. Semi-structured face-to-face interviews were performed to collect information from six professionals from four international firms.

Findings

The findings of the case studies revealed that defining LOD is an ambiguous process and requires high-cumulated experience. The results provide the challenges, adopted solutions and lessons learned. It was highlighted that the cost of including an element or related information in the model should be compared to the benefit of having that information in the model from the perspective of defined BIM uses.

Research limitations/implications

The findings are based on the projects that were performed in three developing countries. However, the main contractors were international companies and the construction management firms were well-known companies in the USA. In the future, additional case studies can be performed in other countries to identify similarities and regional differences.

Practical implications

The results of this study can be used to highlight the current needs in determining the LOD and guide the efforts for developing standards and policies in the AEC sector to streamline BIM adoption process in practice. The practitioners can utilize the findings of this study to increase their efficiency in adopting BIM and to decrease the time loss and cost overruns.

Originality/value

Most of the previous studies investigated the benefits and challenges when adopting BIM, and few of them considered LOD definition as a core part of this process. This study specifically investigated the current practice in determining the LOD and the required properties of elements that are going to be included in a BIM model. It also described the applied solutions and lessons learned in the case studies.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 April 2024

Paulo Alberto Sampaio Santos, Breno Cortez and Michele Tereza Marques Carvalho

Present study aimed to integrate Geographic Information Systems (GIS) and Building Information Modeling (BIM) in conjunction with multicriteria decision-making (MCDM) to enhance…

Abstract

Purpose

Present study aimed to integrate Geographic Information Systems (GIS) and Building Information Modeling (BIM) in conjunction with multicriteria decision-making (MCDM) to enhance infrastructure investment planning.

Design/methodology/approach

This analysis combines GIS databases with BIM simulations for a novel highway project. Around 150 potential alternatives were simulated, narrowed to 25 more effective routes and 3 options underwent in-depth analysis using PROMETHEE method for decision-making, based on environmental, cost and safety criteria, allowing for comprehensive cross-perspective comparisons.

Findings

A comprehensive framework proposed was validated through a case study. Demonstrating its adaptability with customizable parameters. It aids decision-making, cost estimation, environmental impact analysis and outcome prediction. Considering these critical factors, this study holds the potential to advance new techniques for assessment and planning railways, power lines, gas and water.

Research limitations/implications

The study acknowledges limitations in GIS data quality, particularly in underdeveloped areas or regions with limited technology access. It also overlooks other pertinent variables, like social, economic, political and cultural issues. Thus, conclusions from these simulations may not entirely represent reality or diverse potential scenarios.

Practical implications

The proposed method automates decision-making, reducing subjectivity, aids in selecting effective alternatives and considers environmental criteria to mitigate negative impacts. Additionally, it minimizes costs and risks while demonstrating adaptability for assessing diverse infrastructures.

Originality/value

By integrating GIS and BIM data to support a MCDM workflow, this study proposes to fill the existing research gap in decision-making prioritization and mitigate subjective biases.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 14