Search results

1 – 2 of 2
Open Access
Article
Publication date: 19 April 2022

Liwei Ju, Zhe Yin, Qingqing Zhou, Li Liu, Yushu Pan and Zhongfu Tan

This study aims to form a new concept of power-to-gas-based virtual power plant (GVPP) and propose a low-carbon economic scheduling optimization model for GVPP considering carbon…

Abstract

Purpose

This study aims to form a new concept of power-to-gas-based virtual power plant (GVPP) and propose a low-carbon economic scheduling optimization model for GVPP considering carbon emission trading.

Design/methodology/approach

In view of the strong uncertainty of wind power and photovoltaic power generation in GVPP, the information gap decision theory (IGDT) is used to measure the uncertainty tolerance threshold under different expected target deviations of the decision-makers. To verify the feasibility and effectiveness of the proposed model, nine-node energy hub was selected as the simulation system.

Findings

GVPP can coordinate and optimize the output of electricity-to-gas and gas turbines according to the difference in gas and electricity prices in the electricity market and the natural gas market at different times. The IGDT method can be used to describe the impact of wind and solar uncertainty in GVPP. Carbon emission rights trading can increase the operating space of power to gas (P2G) and reduce the operating cost of GVPP.

Research limitations/implications

This study considers the electrical conversion and spatio-temporal calming characteristics of P2G, integrates it with VPP into GVPP and uses the IGDT method to describe the impact of wind and solar uncertainty and then proposes a GVPP near-zero carbon random scheduling optimization model based on IGDT.

Originality/value

This study designed a novel structure of the GVPP integrating P2G, gas storage device into the VPP and proposed a basic near-zero carbon scheduling optimization model for GVPP under the optimization goal of minimizing operating costs. At last, this study constructed a stochastic scheduling optimization model for GVPP.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 9 December 2019

Qingqing Wu, Xianguan Zhao, Lihua Zhou, Yao Wang and Yudi Yang

With the rapid development of internet technology, open online social networks provide a broader platform for information spreading. While dissemination of information provides…

Abstract

Purpose

With the rapid development of internet technology, open online social networks provide a broader platform for information spreading. While dissemination of information provides convenience for life, it also brings many problems such as security risks and public opinion orientation. Various negative, malicious and false information spread across regions, which seriously affect social harmony and national security. Therefore, this paper aims to minimize negative information such as online rumors that has attracted extensive attention. The most existing algorithms for blocking rumors have prevented the spread of rumors to some extent, but these algorithms are designed based on entire social networks, mainly focusing on the microstructure of the network, i.e. the pairwise relationship or similarity between nodes. The blocking effect of these algorithms may be unsatisfactory in some networks because of the sparse data in the microstructure.

Design/methodology/approach

An algorithm for minimizing the influence of dynamic rumor based on community structure is proposed in this paper. The algorithm first divides the network into communities, and integrates the influence of each node within communities and rumor influence probability to measure the influence of each node in the entire network, and then selects key nodes and bridge nodes in communities as blocked nodes. After that, a dynamic blocking strategy is adopted to improve the blocking effect of rumors.

Findings

Community structure is one of the most prominent features of networks. It reveals the organizational structure and functional components of a network from a mesoscopic level. The utilization of community structure can provide effective and rich information to solve the problem of data sparsity in the microstructure, thus effectively improve the blocking effect. Extensive experiments on two real-world data sets have validated that the proposed algorithm has superior performance than the baseline algorithms.

Originality/value

As an important research direction of social network analysis, rumor minimization has a profound effect on the harmony and stability of society and the development of social media. However, because the rumor spread has the characteristics of multiple propagation paths, fast propagation speed, wide propagation area and time-varying, it is a huge challenge to improve the effectiveness of the rumor blocking algorithm.

Details

International Journal of Crowd Science, vol. 3 no. 3
Type: Research Article
ISSN: 2398-7294

Keywords

Access

Only content I have access to

Year

Content type

1 – 2 of 2