Search results

1 – 6 of 6
Article
Publication date: 17 July 2019

Zhihao Wang, Wenliang Chen, Min Wang, Qinghe Xu and Can Huang

The purpose of this study is to improve the position and posture accuracy of posture alignment mechanism. The automatic drilling and riveting machine is an important equipment for…

Abstract

Purpose

The purpose of this study is to improve the position and posture accuracy of posture alignment mechanism. The automatic drilling and riveting machine is an important equipment for aircraft assembly. The alignment accuracy of position and posture of the bracket type posture alignment mechanism has a great influence on the operation effect of the machine. Therefore, it is necessary to carry out the kinematic calibration.

Design/methodology/approach

Based on analysis of elastic deformation of the bracket and geometric errors of the posture alignment mechanism, an improved method of kinematic calibration was proposed. The position and posture errors of bracket caused by geometric errors were separated from those caused by gravity. The method of reduction of dimensions was applied to deal with the error coefficient matrix in error identification, and it did not change the coefficient of the error terms. The target position and its posture were corrected to improve the error compensation accuracy. Furthermore, numerical simulation and experimental verification were carried out.

Findings

The simulation and experimental results show that considering the influence of the elastic deformation of the bracket on the calibration effect, the error identification accuracy and compensation accuracy can be improved. The maximum value of position error is reduced from 5.33 mm to 1.60 × 10−1 mm and the maximum value of posture error is reduced from 1.07 × 10−3 rad to 6.02 × 10−4 rad, which is superior to the accuracy without considering the gravity factor.

Originality/value

This paper presents a calibration method considering the effects of geometric errors and gravity. By separating position and posture errors caused by different factors and correcting the target position and its posture, the results of the calibration method are greatly improved. The proposed method might be applied to any parallel mechanism based on the positioner.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 December 2017

Ying Guo, Qinghe Han, Jinxin Wang and Xu Yu

Localization is one of the critical issues in Ocean Internet of Things (OITs). The existing research results of localization in OITs are very limited. It poses many challenges due…

Abstract

Purpose

Localization is one of the critical issues in Ocean Internet of Things (OITs). The existing research results of localization in OITs are very limited. It poses many challenges due to the difficulty of deploy beacon accurately, the difficulty of transmission distance estimation in harsh ocean environment and the underwater node mobility. This paper aims to provide a novel localization algorithm to solve these problems.

Design/methodology/approach

This paper takes the ship with accurate position as a beacon, analyzes the relationship between underwater energy attenuation and node distance and takes them into OITs localization algorithm design. Then, it studies the movement regulation of underwater nodes in the action of ocean current, and designs an Energy-aware Localization Algorithm (ELA) for OITs.

Findings

Proposing an ELA. ELA takes the ship with accurate position information as a beacon to solve the problem of beacon deployment. ELA does not need to calculate the information transmission distance which solves the problem of distance estimation. It takes underwater node movement regulation into computation to solve the problem of node mobility.

Originality value

This paper provides an ELA based on the relationship between propagation energy attenuation and node distance for OITs. It solves the problem of localization in dynamic underwater networks.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 April 2020

Lei Wang, Chuang Xiong and Qinghe Shi

Considering that uncertain factors widely exist in engineering practice, an adaptive collocation method (ACM) is developed for the structural fuzzy uncertainty analysis.

Abstract

Purpose

Considering that uncertain factors widely exist in engineering practice, an adaptive collocation method (ACM) is developed for the structural fuzzy uncertainty analysis.

Design/methodology/approach

ACM arranges points in the axis of the membership adaptively. Through the adaptive collocation procedure, ACM can arrange more points in the axis of the membership where the membership function changes sharply and fewer points in the axis of the membership where the membership function changes slowly. At each point arranged in the axis of the membership, the level-cut strategy is used to obtain the cut-level interval of the uncertain variables; besides, the vertex method and the Chebyshev interval uncertainty analysis method are used to conduct the cut-level interval uncertainty analysis.

Findings

The proposed ACM has a high accuracy without too much additional computational efforts.

Originality/value

A novel ACM is developed for the structural fuzzy uncertainty analysis.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 April 2024

Shilong Zhang, Changyong Liu, Kailun Feng, Chunlai Xia, Yuyin Wang and Qinghe Wang

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction…

Abstract

Purpose

The swivel construction method is a specially designed process used to build bridges that cross rivers, valleys, railroads and other obstacles. To carry out this construction method safely, real-time monitoring of the bridge rotation process is required to ensure a smooth swivel operation without collisions. However, the traditional means of monitoring using Electronic Total Station tools cannot realize real-time monitoring, and monitoring using motion sensors or GPS is cumbersome to use.

Design/methodology/approach

This study proposes a monitoring method based on a series of computer vision (CV) technologies, which can monitor the rotation angle, velocity and inclination angle of the swivel construction in real-time. First, three proposed CV algorithms was developed in a laboratory environment. The experimental tests were carried out on a bridge scale model to select the outperformed algorithms for rotation, velocity and inclination monitor, respectively, as the final monitoring method in proposed method. Then, the selected method was implemented to monitor an actual bridge during its swivel construction to verify the applicability.

Findings

In the laboratory study, the monitoring data measured with the selected monitoring algorithms was compared with those measured by an Electronic Total Station and the errors in terms of rotation angle, velocity and inclination angle, were 0.040%, 0.040%, and −0.454%, respectively, thus validating the accuracy of the proposed method. In the pilot actual application, the method was shown to be feasible in a real construction application.

Originality/value

In a well-controlled laboratory the optimal algorithms for bridge swivel construction are identified and in an actual project the proposed method is verified. The proposed CV method is complementary to the use of Electronic Total Station tools, motion sensors, and GPS for safety monitoring of swivel construction of bridges. It also contributes to being a possible approach without data-driven model training. Its principal advantages are that it both provides real-time monitoring and is easy to deploy in real construction applications.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 November 2023

Weiwen Mu, Wenbai Chen, Huaidong Zhou, Naijun Liu, Haobin Shi and Jingchen Li

This paper aim to solve the problem of low assembly success rate for 3c assembly lines designed based on classical control algorithms due to inevitable random disturbances and…

Abstract

Purpose

This paper aim to solve the problem of low assembly success rate for 3c assembly lines designed based on classical control algorithms due to inevitable random disturbances and other factors,by incorporating intelligent algorithms into the assembly line, the assembly process can be extended to uncertain assembly scenarios.

Design/methodology/approach

This work proposes a reinforcement learning framework based on digital twins. First, the authors used Unity3D to build a simulation environment that matches the real scene and achieved data synchronization between the real environment and the simulation environment through the robot operating system. Then, the authors trained the reinforcement learning model in the simulation environment. Finally, by creating a digital twin environment, the authors transferred the skill learned from the simulation to the real environment and achieved stable algorithm deployment in real-world scenarios.

Findings

In this work, the authors have completed the transfer of skill-learning algorithms from virtual to real environments by establishing a digital twin environment. On the one hand, the experiment proves the progressiveness of the algorithm and the feasibility of the application of digital twins in reinforcement learning transfer. On the other hand, the experimental results also provide reference for the application of digital twins in 3C assembly scenarios.

Originality/value

In this work, the authors designed a new encoder structure in the simulation environment to encode image information, which improved the model’s perception of the environment. At the same time, the authors used the fixed strategy combined with the reinforcement learning strategy to learn skills, which improved the rate of convergence and stability of skills learning. Finally, the authors transferred the learned skills to the physical platform through digital twin technology and realized the safe operation of the flexible printed circuit assembly task.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 15 February 2021

Qi Sun, Fang Sun, Cai Liang, Chao Yu and Yamin Zhang

Beijing rail transit can actively control the density of rail transit passenger flow, ensure travel facilities and provide a safe and comfortable riding atmosphere for rail…

Abstract

Purpose

Beijing rail transit can actively control the density of rail transit passenger flow, ensure travel facilities and provide a safe and comfortable riding atmosphere for rail transit passengers during the epidemic. The purpose of this paper is to efficiently monitor the flow of rail passengers, the first method is to regulate the flow of passengers by means of a coordinated connection between the stations of the railway line; the second method is to objectively distribute the inbound traffic quotas between stations to achieve the aim of accurate and reasonable control according to the actual number of people entering the station.

Design/methodology/approach

This paper analyzes the rules of rail transit passenger flow and updates the passenger flow prediction model in time according to the characteristics of passenger flow during the epidemic to solve the above-mentioned problems. Big data system analysis restores and refines the time and space distribution of the finely expected passenger flow and the train service plan of each route. Get information on the passenger travel chain from arriving, boarding, transferring, getting off and leaving, as well as the full load rate of each train.

Findings

A series of digital flow control models, based on the time and space composition of passengers on trains with congested sections, has been designed and developed to scientifically calculate the number of passengers entering the station and provide an operational basis for operating companies to accurately control flow.

Originality/value

This study can analyze the section where the highest full load occurs, the composition of passengers in this section and when and where passengers board the train, based on the measured train full load rate data. Then, this paper combines the full load rate control index to perform reverse deduction to calculate the inbound volume time-sharing indicators of each station and redistribute the time-sharing indicators for each station according to the actual situation of the inbound volume of each line during the epidemic. Finally, form the specified full load rate index digital time-sharing passenger flow control scheme.

Details

Smart and Resilient Transportation, vol. 3 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

1 – 6 of 6