Search results

1 – 10 of 10
Article
Publication date: 12 March 2018

Wei Sun, Xiaokai Mu, Qingchao Sun, Zhiyong Sun and Xiaobang Wang

This paper aims to comprehensively achieve the requirements of high assembly precision and low cost, a precision-cost model of assembly based on three-dimensional (3D) tolerance…

Abstract

Purpose

This paper aims to comprehensively achieve the requirements of high assembly precision and low cost, a precision-cost model of assembly based on three-dimensional (3D) tolerance is established in this paper.

Design/methodology/approach

The assembly precision is related to the tolerance of parts and the deformation of matching surfaces under load. In this paper, the small displacement torsor (SDT) theory is first utilized to analyze the manufacturing tolerances of parts and the assembly deformation deviation of matching surface. In the meanwhile, the extracting method of SDT parameters is proposed and the assembly precision calculation model based on the 3D tolerance is established. Second, an integrated optimization model based on the machining cost, assembly cost (mapping the deviation domain to the SDT domain) and quality loss cost is built. Finally, the practicability of the precision-cost model is verified by optimizing the horizontal machining center.

Findings

The assembly deviation has a great influence on cost fluctuation. By setting the optimization objective to maximize the assembly precision, the optimal total cost is CNY 72.77, decreasing by 16.83 per cent from the initial value, which meets economical requirements. Meanwhile, the upper bound of each processing tolerance is close to the maximum value of 0.01 mm, indicating that the load deformation can be offset by appropriately increasing the upper bound of the tolerance, but it is necessary to strictly restrict the manufacturing tolerances of lower parts in a reasonable range.

Originality/value

In this paper, a 3D deviation precision-cost model of assembly is established, which can describe the assembly precision more accurately and achieve a lower cost compared with the assembly precision model based on rigid parts.

Details

Assembly Automation, vol. 38 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 10 April 2019

Qingchao Sun, Xiaokai Mu, Bo Yuan, Jiawen Xu and Wei Sun

This paper aims to distinguish the relationship between the morphology characteristics of different scales and the contact performance of the mating surfaces. Also, an integrated…

Abstract

Purpose

This paper aims to distinguish the relationship between the morphology characteristics of different scales and the contact performance of the mating surfaces. Also, an integrated method of the spectrum analysis and the wavelet transform is used to separate the morphology characteristics of the actual machined parts.

Design/methodology/approach

First, a three-dimensional (3D) surface profilometer is used to obtain the surface morphology data of the actual machined parts. Second, the morphology characteristics of different scales are realized by the wavelet analysis and the power spectral density. Third, the reverse modeling engineering is used to construct the 3D contact models for the macroscopic characteristics. Finally, the finite element method is used to analyze the contact stiffness and the contact area of the 3D contact model.

Findings

The contact area and the nominal contact pressure Pn have a nonlinear relationship in the whole compression process for the 3D contact model. The percentage of the total contact area of the macro-scale mating surface is about 70 per cent when the contact pressure Pn is in the range of 0-100 MPa, and the elastic contact area accounts for the vast majority. Meanwhile, when the contact pressure Pn is less than 10MPa, the influence factor (the relative error of contact stiffness) is larger than 50 per cent, so the surface macro-scale morphology has a weakening effect on the normal contact stiffness of the mating surfaces.

Originality/value

This paper provides an effective method for the multi-scale separation of the surface morphology and then lays a certain theoretical foundation for improving the surface quality of parts and the morphology design.

Details

Engineering Computations, vol. 36 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 June 2021

Binbin Zhao, Yunlong Wang, Qingchao Sun, Yuanliang Zhang, Xiao Liang and Xuewei Liu

Assembly accuracy is the guarantee of mechanical product performance, and the characterization of the part with geometrical deviations is the basis of assembly accuracy analysis.

Abstract

Purpose

Assembly accuracy is the guarantee of mechanical product performance, and the characterization of the part with geometrical deviations is the basis of assembly accuracy analysis.

Design/methodology/approach

The existed small displacement torsors (SDT) model cannot fully describe the part with multiple mating surfaces, which increases the difficulty of accuracy analysis. This paper proposed an integrated characterization method for accuracy analysis. By analyzing the internal coupling relationship of the different geometrical deviations in a single part, the Monomer Model was established.

Findings

The effectiveness of the Monomer Model is verified through an analysis of a simulated rotor assembly analysis, and the corresponding accuracy analysis method based on the model reasonably predicts the assembly deviation of the rotor.

Originality/value

The Monomer Model realizes the reverse calculation of assembly deformation for the first time, which can be used to identify the weak links that affect the assembly accuracy, thus support the accuracy improvement in the re-assembly stage.

Details

Assembly Automation, vol. 41 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 April 2020

Qingchao Sun, Qingyuan Lin, Bin Yang, Xianlian Zhang and Lintao Wang

Bolted joints are the most common type of mechanical connections, and improving the anti-loosening performance of bolts for the reliable performance of mechanical and building…

Abstract

Purpose

Bolted joints are the most common type of mechanical connections, and improving the anti-loosening performance of bolts for the reliable performance of mechanical and building structures is highly significant.

Design/methodology/approach

Because of the lack of sufficient theoretical basis for the evaluation and design of anti-loosening bolts, a quantitative evaluation model exhibiting the following two evaluation criteria for anti-loosening bolts is introduced: bolt rotation angular acceleration criterion and critical transverse load criterion. Based on the relationship among bolt tension, transverse load and bolt rotation angular acceleration, a critical transverse load calculation model is put forward, and the mechanism by which the critical transverse load increases with the increase of bolt tension is revealed.

Findings

Based on the above model, a new type of anti-loosening bolt is designed, which generates additional bolt tension when the transverse load increases, and then improves the critical transverse load of the bolt. The effectiveness of the new type of anti-loosening bolt is verified by theoretical calculations and experiments.

Originality/value

The proposed model and method set a preliminary theoretical foundation for the evaluation of bolt anti-loosening performance and the design of a new anti-loosening bolt.

Details

Assembly Automation, vol. 40 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 January 2020

Qingchao Sun, Xin Liu, Xiaokai Mu and Yichao Gao

This paper aims to study the relationship between normal contact stiffness and contact load. It purpose a new calculation model of the normal contact stiffness of joint surfaces…

Abstract

Purpose

This paper aims to study the relationship between normal contact stiffness and contact load. It purpose a new calculation model of the normal contact stiffness of joint surfaces by considering the elastic–plastic critical deformation change of asperities contact.

Design/methodology/approach

The paper described the surface topography of joint surfaces based on fractal geometry, and fractal parameters and of fractal function derived from measurement data. According to the plastic–elastic contact theory, the contact deformation characteristic of asperities was analyzed; the critical deformation estimation model was presented, which expressed critical deformation as the function of fractal parameters and contact deformation; the contact stiffness calculation model of single asperity was brought forward by considering critical deformation change.

Findings

The paper combined the surface topography description function, analyzed the asperity contact states by considering the critical deformation change, and calculated normal contact stiffness based on fractal theory and contact deformation analysis. The comparison between theoretical contact stiffness and experimental data indicated that the theoretical normal contact stiffness agreed with the experimental data, and the estimation model for normal contact stiffness was appropriate.

Research limitations/implications

Owing to the possibility of plastic deformation during the loading process, the experimental curve between the contact stiffness and the contact load is nonlinear, resulting in an error between the experimental results and the theoretical calculation results.

Originality/value

The paper established the relationship between critical deformation and fractal surface topography by constructing asperity distribution function. The paper proposed a new normal contact stiffness calculation model of joint surfaces by considering the variation of critical deformation in contact process.

Details

Assembly Automation, vol. 40 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 October 2018

Xiaokai Mu, Qingchao Sun, Wei Sun, Yunlong Wang, Chuanhua Wang and Xiaobang Wang

The traditional precision design only takes the influence of geometric tolerance of the parts and does not involve the load deformation in the assembly process. This paper aims to…

Abstract

Purpose

The traditional precision design only takes the influence of geometric tolerance of the parts and does not involve the load deformation in the assembly process. This paper aims to analyze the influence mechanism of flexible parts deformation on the geometric precision, and then to ensure the reliability and stability of the mechanical system.

Design/methodology/approach

Firstly, this paper adopts the N-GPS to analyze the influence mechanism of flexible parts deformation on the geometric precision and constructs a coupling 3D tolerance mathematical model of the geometric tolerance and the load deformation deviation based on the SDT theory, homogeneous coordinate transformation theory and surface authentication idea. Secondly, the least square method is used to fit the deformation surface of the mating surface under load so as to complete the conversion from the non-ideal element to the ideal element.

Findings

This paper takes the horizontal machining center as a case to obtain the deformation information of the mating surface under the self-weight load. The results show that the deformation deviation of the parts has the trend of transmission and accumulation under the load. The terminal deformation cumulative amount of the system is up to –0.0249 mm, which indicated that the influence of parts deformation on the mechanical system precision cannot be ignored.

Originality/value

This paper establishes a comprehensive 3D tolerance mathematical model, which comprehensively considers the effect of the dimensional tolerance, geometric tolerance and load deformation deviation. By this way, the assembly precision of mechanical system can be accurately predicted.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 September 2009

Maurizio Marinelli

Between 1860 and 1945, the Chinese port city of Tianjin was the site of up to nine foreign-controlled concessions, functioning side by side. Rogaski defined it as a…

Abstract

Between 1860 and 1945, the Chinese port city of Tianjin was the site of up to nine foreign-controlled concessions, functioning side by side. Rogaski defined it as a ‘hyper-colony’, a term which reflects Tianjin's socio-political intricacies and the multiple colonial discourses of power and space. This essay focuses on the transformation of the Tianjin cityscape during the last 150 years, and aims at connecting the hyper-colonial socio-spatial forms with the processes of post-colonial identity construction. Tianjin is currently undergoing a massive renovation program: its transmogrifying cityscape unveils multiple layers of ‘globalizing’ spatialities and temporalities, throwing into relief processes of power and capital accumulation, which operate via the urban regeneration's experiment. This study uses an ‘interconnected history’ approach and traces the interweaving ‘worlding’ nodes of today's Tianjin back to the global connections established in the city during the hyper-colonial period. What emerges is Tianjin's simultaneous tendency towards ‘world-class-ness’ and ‘China-class-ness’.

Details

Open House International, vol. 34 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 9 February 2024

Chunxia Zhu and Xianling Meng

Micro-texture is processed on the surface to reduce the friction of the contact surface, and its application is more and more extensive. The purpose of this paper is to create a…

50

Abstract

Purpose

Micro-texture is processed on the surface to reduce the friction of the contact surface, and its application is more and more extensive. The purpose of this paper is to create a texture function model to study the influence of surface parameters on the accuracy of the simulated surface so that it can more accurately reflect the characteristics of the real micro-textured surface.

Design/methodology/approach

The microstructure function model of rough surfaces is established based on fractal geometry and polar coordinate theory. The offset angle θ is introduced into the fractal geometry function to make the surface asperity normal perpendicular to the tangent of the surface. The 2D and 3D contour surfaces of the surface groove texture are analyzed by MATLAB simulation. The effects of fractal parameters (D and G) and texture parameter h on the curvature of the surface micro-texture model were studied.

Findings

This paper more accurately characterizes the textured 3D curved surface, especially the surface curvature. The scale coefficient G significantly affects curvature, and the influence of fractal dimension D and texture parameters on curvature can be ignored.

Originality/value

The micro-texture model of the rough surface was successfully established, and the range of fractal parameters was determined. It provides a new method for the study of surface micro-texture tribology.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0298/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 November 2020

Carl Déry

This paper aims to explore various tensions related to the diffusion and reception of the New Qing History (NQH) in China, and more specifically, it aims at underlying a recurrent…

Abstract

Purpose

This paper aims to explore various tensions related to the diffusion and reception of the New Qing History (NQH) in China, and more specifically, it aims at underlying a recurrent tension within the core of this debate, between a Global and a Nationalist historical narrative.

Design/methodology/approach

The author’s focus is to analyze various texts published in China between 2006 and 2018.

Findings

The author argues that the intensity of the current debate is partly related on the one hand, to the fact that NQH undermines various aspects of China’s Nationalist teleology and territorial claims and, on the other hand, to the basic difficulty of accepting the coexistence of various historical representations that are risking to weaken contemporary’s justifications of its rising schemes.

Originality/value

The text presents an original reading of some important issues raised by the NQH debate.

Details

Social Transformations in Chinese Societies, vol. 16 no. 2
Type: Research Article
ISSN: 1871-2673

Keywords

Article
Publication date: 2 June 2021

Hechem Ajmi, Nadia Arfaoui and Karima Saci

This paper aims to investigate the volatility transmission across stocks, gold and crude oil markets before and during the novel coronavirus (COVID-19) crisis.

Abstract

Purpose

This paper aims to investigate the volatility transmission across stocks, gold and crude oil markets before and during the novel coronavirus (COVID-19) crisis.

Design/methodology/approach

A multivariate vector autoregression (VAR)-Baba, Engle, Kraft and Kroner generalized autoregressive conditional heteroskedasticity model (BEKK-GARCH) is used to assess volatility transmission across the examined markets. The sample is divided as follows. The first period ranging from 02/01/2019 to 10/03/2020 defines the pre-COVID-19 crisis. The second period is from 11/03/2020 to 05/10/2020, representing the COVID-19 crisis period. Then, a robustness test is used using exponential GARCH models after including an exogenous variable capturing the growth of COVID-19 confirmed death cases worldwide with the aim to test the accuracy of the VAR-BEKK-GARCH estimated results.

Findings

Results indicate that the interconnectedness among the examined market has been intensified during the COVID-19 crisis, proving the lack of hedging opportunities. It is also found that stocks and Gold markets lead the crude oil market especially during the COVID-19 crisis, which explains the freefall of the crude oil price during the health crisis. Similarly, results show that Gold is most likely to act as a diversifier rather than a hedging tool during the current health crisis.

Originality/value

Although the recent studies in the field focused on analyzing the relationships between different markets during the first quarter of 2020, this study considers a larger data set with the aim to assess the volatility transmission across the examined international markets Amid the COVID-19 crisis, while it shows the most significant impact on various financial markets compared to other diseases.

Details

Studies in Economics and Finance, vol. 38 no. 5
Type: Research Article
ISSN: 1086-7376

Keywords

1 – 10 of 10