Search results

1 – 10 of 191
Article
Publication date: 2 February 2024

Bushi Chen, Xunyu Zhong, Han Xie, Pengfei Peng, Huosheng Hu, Xungao Zhong and Qiang Liu

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system…

Abstract

Purpose

Autonomous mobile robots (AMRs) play a crucial role in industrial and service fields. The paper aims to build a LiDAR-based simultaneous localization and mapping (SLAM) system used by AMRs to overcome challenges in dynamic and changing environments.

Design/methodology/approach

This research introduces SLAM-RAMU, a lifelong SLAM system that addresses these challenges by providing precise and consistent relocalization and autonomous map updating (RAMU). During the mapping process, local odometry is obtained using iterative error state Kalman filtering, while back-end loop detection and global pose graph optimization are used for accurate trajectory correction. In addition, a fast point cloud segmentation module is incorporated to robustly distinguish between floor, walls and roof in the environment. The segmented point clouds are then used to generate a 2.5D grid map, with particular emphasis on floor detection to filter the prior map and eliminate dynamic artifacts. In the positioning process, an initial pose alignment method is designed, which combines 2D branch-and-bound search with 3D iterative closest point registration. This method ensures high accuracy even in scenes with similar characteristics. Subsequently, scan-to-map registration is performed using the segmented point cloud on the prior map. The system also includes a map updating module that takes into account historical point cloud segmentation results. It selectively incorporates or excludes new point cloud data to ensure consistent reflection of the real environment in the map.

Findings

The performance of the SLAM-RAMU system was evaluated in real-world environments and compared against state-of-the-art (SOTA) methods. The results demonstrate that SLAM-RAMU achieves higher mapping quality and relocalization accuracy and exhibits robustness against dynamic obstacles and environmental changes.

Originality/value

Compared to other SOTA methods in simulation and real environments, SLAM-RAMU showed higher mapping quality, faster initial aligning speed and higher repeated localization accuracy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 27 November 2023

Yuehua Bao, Qiang Chen and Xingcan Xia

The purpose of this paper is to analyse the development and evolution of industrial innovation ecosystems of Around-Tongji Knowledge Economy Circle from the three levels mentioned…

Abstract

Purpose

The purpose of this paper is to analyse the development and evolution of industrial innovation ecosystems of Around-Tongji Knowledge Economy Circle from the three levels mentioned above, focusing on knowledge-producing populations, core populations and service-supporting populations, and to further develop this research framework by combining with the latest developments.

Design/methodology/approach

Based on the five-helix theory and economic census statistical data, this paper adopts geographic information system technology and examines the characteristics of the industrial innovation ecosystem and the synergistic evolution process in Around-Tongji knowledge economy circle.

Findings

The knowledge product populations lead the development of industries in Around-Tongji Knowledge Economy Circle. It contributes political capital output for the government. It innovates community cooperation and governance mode, and it improves the natural ecological environment. In the face of the changes and challenges in the development environment, the future development must be recognised from the height of the iterative development of the interaction mode between university knowledge production and economic and social development.

Originality/value

Based on the five-helix theory and economic census statistical data, this paper examines the characteristics of the industrial innovation ecosystem and the synergistic evolution process in Around-Tongji Knowledge Economy Circle. It further expands the research framework used to develop a synergistic evolution model, which reveals the interactive and synergistic relationship among the populations and the evolution characteristics of the entire industrial innovation ecosystem. This paper also provides useful perspectives for the study of the industrial innovation ecosystem.

Details

Asia Pacific Journal of Innovation and Entrepreneurship, vol. 18 no. 1
Type: Research Article
ISSN: 2071-1395

Keywords

Open Access
Article
Publication date: 31 October 2023

Hongping Xing, Yu Liu and Xiaodan Sun

The smoothness of the high-speed railway (HSR) on the bridge may exceed the allowable standard when an earthquake causes vibrations for HSR bridges, which may threaten the safety…

Abstract

Purpose

The smoothness of the high-speed railway (HSR) on the bridge may exceed the allowable standard when an earthquake causes vibrations for HSR bridges, which may threaten the safety of running trains. Indeed, few studies have evaluated the exceeding probability of rail displacement exceeding the allowable standard. The purposes of this article are to provide a method for investigating the exceeding probability of the rail displacement of HSRs under seismic excitation and to calculate the exceeding probability.

Design/methodology/approach

In order to investigate the exceeding probability of the rail displacement under different seismic excitations, the workflow of analyzing the smoothness of the rail based on incremental dynamic analysis (IDA) is proposed, and the intensity measure and limit state for the exceeding probability analysis of HSRs are defined. Then a finite element model (FEM) of an assumed HSR track-bridge system is constructed, which comprises a five-span simply-supported girder bridge supporting a finite length CRTS II ballastless track. Under different seismic excitations, the seismic displacement response of the rail is calculated; the character of the rail displacement is analyzed; and the exceeding probability of the rail vertical displacement exceeding the allowable standard (2mm) is investigated.

Findings

The results show that: (1) The bridge-abutment joint position may form a step-like under seismic excitation, threatening the running safety of high-speed trains under seismic excitations, and the rail displacements at mid-span positions are bigger than that at other positions on the bridge. (2) The exceeding probability of rail displacement is up to about 44% when PGA = 0.01g, which is the level-five risk probability and can be described as 'very likely to happen'. (3) The exceeding probability of the rail at the mid-span positions is bigger than that above other positions of the bridge, and the mid-span positions of the track-bridge system above the bridge may be the most hazardous area for the running safety of trains under seismic excitation when high-speed trains run on bridges.

Originality/value

The work extends the seismic hazardous analysis of HSRs and would lead to a better understanding of the exceeding probability for the rail of HSRs under seismic excitations and better references for the alert of the HSR operation.

Article
Publication date: 23 June 2023

Wilfred Emori, Paul C. Okonkwo, Hitler Louis, Ling Liu, Ernest C. Agwamba, Tomsmith Unimuke, Peter Okafor, Atowon D. Atowon, Anthony Ikechukwu Obike and ChunRu Cheng

Owing to the toxicity, biodegradability, and cost of most corrosion inhibitors, research attention is now focused on the development of environmentally benign, biodegradable…

Abstract

Purpose

Owing to the toxicity, biodegradability, and cost of most corrosion inhibitors, research attention is now focused on the development of environmentally benign, biodegradable, cheap, and efficient options. In consideration of these facts, chrysin, a phytocompound of Populus tomentosa (Chinese white poplar) has been isolated and investigated for its anticorrosion abilities on carbon steel in a mixed acid and chloride system. This highlights the main purpose of the study.

Design/methodology/approach

Chrysin was isolated from Populus tomentosa using column chromatography and characterized using Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The investigations are outlined based on theory (Fukui indices, condensed density functional theory and molecular dynamic simulation) and experiments (electrochemical, gravimetry and surface morphology examinations).

Findings

Theoretical evaluations permitted the description of the adsorption characteristics, and molecular interactions and orientations of chrysin on Fe substrate. The interaction energy for protonated and neutral chrysin on Fe (110) were −149.10 kcal/mol and −143.28 kcal/mol, respectively. Moreover, experimental investigations showed that chrysin is a potent mixed-type corrosion inhibitor for steel, whose effectiveness depends on its surrounding temperature and concentration. The optimum inhibition efficiency of 78.7% after 24 h for 1 g/L chrysin at 298 K indicates that the performance of chrysin, as a pure compound, compares favorably with other phytocompounds and plant extracts investigated under similar conditions. However, the inhibition efficiency decreased to 62.5% and 51.8% at 318 K after 48 h and 72 h, respectively.

Originality/value

The novelty of this study relies on the usage of a pure compound in corrosion suppression investigation, thus eliminating the unknown influences obtainable by the presence of multi-phytocompounds in plant extracts, thereby advancing the commercialization of bio-based corrosion inhibitors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 16 May 2023

Sabina Szymczak, Aleksandra Parteka and Joanna Wolszczak-Derlacz

The study aims to examine the joint effects of foreign ownership (FO) and involvement in global value chains (GVCs) on the productivity performance of firms from a catching-up…

2898

Abstract

Purpose

The study aims to examine the joint effects of foreign ownership (FO) and involvement in global value chains (GVCs) on the productivity performance of firms from a catching-up country (Poland) and a leader economy (Germany).

Design/methodology/approach

The authors use micro-level data on firms combined with several sector-level GVC participation measures. The authors investigate whether the link between productivity and the overall sectoral degree of involvement in global production structures depends on a firm's ownership. The authors verify the robustness of the obtained results by using an instrumental variables approach and weighted regression.

Findings

The results show that domestically owned firms are less productive than foreign ones, which is particularly true at low GVC participation levels. However, as GVC involvement increases, the FO productivity premium decreases, leading to productivity catching up between foreign and domestically owned firms. This mechanism is similar in Poland and Germany. However, in the leader country (Germany), the productivity performance of domestically owned firms is more stable along the distribution of GVC involvement.

Originality/value

This study contributes to the foreign direct investment (FDI)–productivity literature by comparing the catching-up and developed countries' perspectives and incorporating the productivity–GVC relationship into the FDI analysis. The authors show that the FO premium is not confined to the developing context but is also present in a leader country. Moreover, the link between productivity and the overall sectoral degree of involvement in global production structures depends on a firm's ownership.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 12 December 2023

Qing Zhou, Yuanqing Liu, Xiaofeng Liu and Guoping Cai

In the post-capture stage, the tumbling target rotates the combined spacecraft system, and the detumbling operation performed by the space robot is required. To save the costly…

Abstract

Purpose

In the post-capture stage, the tumbling target rotates the combined spacecraft system, and the detumbling operation performed by the space robot is required. To save the costly onboard fuel of the space robot, this paper aims to present a novel post-capture detumbling strategy.

Design/methodology/approach

Actuated by the joint rotations of the manipulator, the combined system is driven from three-axis tumbling state to uniaxial rotation about its maximum principal axis. Only unidirectional thrust perpendicular to the axis is needed to slow down the uniaxial rotation, thus saving the thruster fuel. The optimization problem of the collision-free detumbling trajectory of the space robot is described, and it is optimized by the particle swarm optimization algorithm.

Findings

The numerical simulation results show that along the trajectory planned by the detumbling strategy, the maneuver of the manipulator can precisely drive the combined system to rotate around its maximum principal axis, and the final kinetic energy of the combined system is smaller than the initial. The unidirectional thrust and the lower kinetic energy can ensure the fuel-saving in the subsequent detumbling stage.

Originality/value

This paper presents a post-capture detumbling strategy to drive the combined system from three-axis tumbling state to uniaxial rotation about its maximum principal axis by redistributing the angular momentum of the parts of the combined system. The strategy reduces the thrust torque for detumbling to effectively save the thruster fuel.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 January 2024

Liangbin Chen, Lihong Zhao, Keren Ding, Kaibo Xu and Xianzhe Tang

This study aims to optimize the preparation conditions and modify the nanofiltration (NF) membranes to prepare high-performance polysulfone/sulfonated polysulfone composite…

Abstract

Purpose

This study aims to optimize the preparation conditions and modify the nanofiltration (NF) membranes to prepare high-performance polysulfone/sulfonated polysulfone composite nanofiltration (PSF/SPSF-NF) membranes through interfacial polymerization.

Design/methodology/approach

Investigating the impacts of anhydrous piperazine (PIP) concentration, trimesoyl chloride (TMC) concentration and basement membrane type on NF membrane performance, the optimal membrane was prepared. In addition, nano-SiO2 was added to the active separation layer to modify the NF membranes.

Findings

The comprehensive performance of PSF/SPSF-NF membranes was optimized when the concentration of PIP was 0.75 Wt.% and the concentration of TMC was 0.15 Wt.%, at which time the water flux was 66.1 L·m−2·h−1 and the retention rate of Na2SO4 was 98.1%. The comprehensive performance of polysulfone/sulfonated polysulfone-SiO2 nanofiltration (PSF/SPSF-SiO2-NF) membranes was optimized when the blending ratio of nano-SiO2 to PIP was 2:3, with a pure water flux of 81.9 L·m−2·h−1 and a Na2SO4 retention rate of 95.9%. Compared to polysulfone nanofiltration (PSF-NF) membranes and PSF/SPSF-NF membranes, NF membranes with nano-SiO2 increased the flux recovery rate by 22.9% and 8.7%.

Practical implications

PSF/SPSF-SiO2-NF membrane exhibits excellent antifouling properties.

Originality/value

There is currently no literature available on the preparation of NF membranes using polysulfone/sulfonated polysulfone (PSF/SPFS) as a substrate. This provides a method for modifying NF membranes, starting with the modification of the basement membrane and then modifying the active separation layer.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 December 2022

Melisa Ozbiltekin-Pala, Aydın Koçak and Yigit Kazancoglu

COVID-19 is a global event affecting supply chain operations and human health. With COVID-19, many issues in business models, business processes and supply chains, especially in…

Abstract

Purpose

COVID-19 is a global event affecting supply chain operations and human health. With COVID-19, many issues in business models, business processes and supply chains, especially in the manufacturing industry, have had to change. The ability to analyze supply chain performances and ensure circularity in supply chains has become one of the factors whose importance has increased rapidly with COVID-19. Therefore, it aims to determine which supply chain performance criteria come to the fore for the company under consideration to accelerate the transformation into high performance and circularity in supply chains.

Design/methodology/approach

In this study, a new circular-SCOR model is proposed, and 17 supply chain performance measurement criteria are prioritized for a manufacturing company in the context of circular economy principles during COVID-19 by using stepwise weight assessment ratio analysis and analytical hierarchy process method, separately.

Findings

As a result, for both methods, in the case study discussed, the demand fulfillment rate is determined as the most prominent criterion in line with the circular economy principles in the COVID-19 period in manufacturing supply chains.

Originality/value

It is expected that this study will contribute to managers and policy makers as it addresses the “new normal” that started after COVID-19 and the criteria to be considered in supply chain performance measurement and emphasizes the need to adopt circular supply chains, especially in manufacturing industries.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 14 November 2023

Haitham Nobanee, Ahmad Yuosef Alodat and Dipanwita Chakraborty

The purpose of this study is to evaluate the progress and scholarly contributions concerning the effects of COVID-19 on transportation.

Abstract

Purpose

The purpose of this study is to evaluate the progress and scholarly contributions concerning the effects of COVID-19 on transportation.

Design/methodology/approach

Using the SCOPUS database, an analysis was conducted on the output of 733 studies concerning COVID-19 and transportation from 2020 to 2022. Bibliometric visualization techniques were performed, which included funding sponsors, top-cited documents, top journals, top countries, co-authorship of authors, co-citation of authors and keyword analysis.

Findings

This study presents diverse findings encompassing influential authors, predominant countries, prominent journals, pivotal papers, funding institutions and affiliations engaged in COVID-19 and transportation research. The research offers a comprehensive assessment of the field’s advancement, addressing existing gaps within the context of limited pertinent literature.

Practical implications

These practical implications highlight how the taxonomical study using bibliometric visualization can inform various aspects of research, policy, practice and decision-making related to COVID-19 and transportation.

Originality/value

The study uses bibliometric visualization techniques to provide a comprehensive overview of existing literature and research trends in COVID-19 and transportation. Its taxonomical approach categorizes the literature systematically, enhancing its originality. The comprehensive analysis contributes to understanding the research landscape, while visualization uncovers new insights. Overall, the study’s unique focus, visualization techniques, taxonomical approach and comprehensive analysis offer originality and potential for new insights in this field.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 11 January 2024

Qiang Sun, Quantong Jiang, Siwei Wu, Chang Liu, Heng Tang, L. Song, Hao Shi, Jizhou Duan and BaoRong Hou

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large…

Abstract

Purpose

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large concentration gradient.

Design/methodology/approach

The macroscopic and microscopic morphology, thickness, surface roughness, chemical composition and structure of the coating were characterized by different characterization methods. The corrosion resistance of the film was studied by electrochemical and scanning Kelvin probe force microscopy. The results show that the addition of ZnO can significantly improve the compactness and corrosion resistance of the MAO coating, but the high concentration of ZnO will cause microcracks, which will reduce the corrosion resistance to a certain extent.

Findings

When the concentration of zinc oxide is 8 g/L, the compactness and corrosion resistance of the coating are the best, and the thickness of the coating is positively correlated with the concentration of ZnO.

Research limitations/implications

Too high concentration of ZnO reduces the performance of MAO coating.

Practical implications

The MAO coating prepared by adding ZnO has good corrosion resistance. Combined with organic coatings, it can be applied in corrosive marine environments, such as ship parts and hulls. To a certain extent, it can reduce the economic loss caused by corrosion.

Originality/value

The effect of ZnO on the corrosion resistance of MAO coating in electrolyte solution was studied systematically, and the conclusion was new to the common knowledge.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 191