Search results

1 – 3 of 3
To view the access options for this content please click here
Article
Publication date: 30 August 2011

Qianchu Liu, Madabhushi Janardhana, Bruce Hinton, Milan Brandt and Khan Sharp

The purpose of this paper is to demonstrate the preliminary work on using laser cladding technology for the restoration of structural integrity.

Downloads
2011

Abstract

Purpose

The purpose of this paper is to demonstrate the preliminary work on using laser cladding technology for the restoration of structural integrity.

Design/methodology/approach

The primary methodology used in this research is to develop a laser cladding‐based metal deposition technique to articulate restoration of structural geometry affected by corrosion damages. Following from this method, it is planned to undertake further work to use the laser cladding process to restore geometry and the associated static/fatigue strength.

Findings

This work has found that it is possible to use laser cladding as a repair technology to improve structural integrity in aluminium alloy aircraft structures in terms of corrosion reduction and geometrical restoration. Initial results have indicated a reduction of static and fatigue resistance with respect to substrate. But more recent works (yet to be published) have revealed improved fatigue strength as measured in comparison to the substrate structural properties.

Originality/value

The research is based on an acceptable materials processing technique.

Details

International Journal of Structural Integrity, vol. 2 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

To view the access options for this content please click here
Article
Publication date: 13 May 2014

Wyman Zhuang, Qianchu Liu and Cathy Smith

One of the challenges in the prediction of fatigue crack growth is to identify representative initial flaws and defects that can cause fatigue crack initiation and…

Abstract

Purpose

One of the challenges in the prediction of fatigue crack growth is to identify representative initial flaws and defects that can cause fatigue crack initiation and subsequent crack growth. Representative initial flaws identified from this experimental study provided an essential input for the fatigue life assessment programme of the PC-9/A training aircraft currently in service. The paper aims to discuss these issues.

Design/methodology/approach

This paper addresses this challenge with a critical literature review and experimental assessment of initial flaw types that may cause fatigue crack initiation, by fatigue testing and fractography analysis using optical microscope and scanning electron microscopy (SEM).

Findings

With a focus on aluminium alloy (AA) 2024-T3 thin sheet, the results cover various discontinuities from microstructural constituent particles inherent from the material process to macrostructural defects and surface discontinuities (such as burrs and machining marks) introduced during the production of airframes. It was found that most fatigue cracks originated from the bore surface discontinuities of rivet holes in the PC-9 vertical stabiliser thin panels rather than microstructural material defects of AA2024-T3 inherent from the material process.

Research limitations/implications

The experimental study has found that quantifying fatigue initial flaw sizes which resulted from poorly finished fastener holes with arbitrary discontinuities at the surface is a challenging topic. This topic is under the current investigation using a statistics based analysis of initial flaws in the prediction of fatigue crack growth.

Practical implications

The results obtained from this experimental study provided an essential input for the empennage and aft fuselage recertification and life assessment programme for the PC-9/A training aircraft currently in service.

Originality/value

This experimental study examined AA2024-T3 thin skin panels from two different PC-9/A aircraft. The post-test failure analysis using optical microscope and SEM found that machining defects dominate fatigue crack initiation that can result in subsequent crack propagation.

Details

International Journal of Structural Integrity, vol. 5 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

To view the access options for this content please click here
Article
Publication date: 25 October 2018

Dylan Agius, Kyriakos I. Kourousis and Chris Wallbrink

The purpose of this paper is to examine the mechanical behaviour of additively manufactured Ti-6Al-4V under cyclic loading. Using as-built selective laser melting (SLM…

Abstract

Purpose

The purpose of this paper is to examine the mechanical behaviour of additively manufactured Ti-6Al-4V under cyclic loading. Using as-built selective laser melting (SLM) Ti-6Al-4V in engineering applications requires a detailed understanding of its elastoplastic behaviour. This preliminary study intends to create a better understanding on the cyclic plasticity phenomena exhibited by this material under symmetric and asymmetric strain-controlled cyclic loading.

Design/methodology/approach

This paper investigates experimentally the cyclic elastoplastic behaviour of as-built SLM Ti-6Al-4V under symmetric and asymmetric strain-controlled loading histories and compares it to that of wrought Ti-6Al-4V. Moreover, a plasticity model has been customised to simulate effectively the mechanical behaviour of the as-built SLM Ti-6Al-4V. This model is formulated to account for the SLM Ti-6Al-4V-specific characteristics, under the strain-controlled experiments.

Findings

The elastoplastic behaviour of the as-built SLM Ti-6Al-4V has been compared to that of the wrought material, enabling characterisation of the cyclic transient phenomena under symmetric and asymmetric strain-controlled loadings. The test results have identified a difference in the strain-controlled cyclic phenomena in the as-build SLM Ti-6Al-4V when compared to its wrought counterpart, because of a difference in their microstructure. The plasticity model offers accurate simulation of the observed experimental behaviour in the SLM material.

Research limitations/implications

Further investigation through a more extensive test campaign involving a wider set of strain-controlled loading cases, including multiaxial (biaxial) histories, is required for a more complete characterisation of the material performance.

Originality/value

The present investigation offers an advancement in the knowledge of cyclic transient effects exhibited by a typical α’ martensite SLM Ti-6Al-4V under symmetric and asymmetric strain-controlled tests. The research data and findings reported are among the very few reported so far in the literature.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 3 of 3