Search results

1 – 10 of 187
Article
Publication date: 7 December 2023

Luca Sciacovelli, Aron Cannici, Donatella Passiatore and Paola Cinnella

The purpose of the paper is to analyse the performances of closures and compressibility corrections classically used in turbulence models when applied to highly-compressible…

Abstract

Purpose

The purpose of the paper is to analyse the performances of closures and compressibility corrections classically used in turbulence models when applied to highly-compressible turbulent boundary layers (TBLs) over flat plates.

Design/methodology/approach

A direct numerical simulation (DNS) database of TBLs, covering a wide range of thermodynamic conditions, is presented and exploited to perform a priori analyses of classical and recent closures for turbulent models. The results are systematically compared to the “exact” terms computed from DNS.

Findings

The few compressibility corrections available in the literature are not found to capture DNS data much better than the uncorrected original models, especially at the highest Mach numbers. Turbulent mass and heat fluxes are shown not to follow the classical gradient diffusion model, which was shown instead to provide acceptable results for modelling the vibrational turbulent heat flux.

Originality/value

The main originality of the present paper resides in the DNS database on which the a priori tests are conducted. The database contains some high-enthalpy simulations at large Mach numbers, allowing to test the performances of the turbulence models in the presence of both chemical dissociation and vibrational relaxation processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 April 2024

Xiaodong Yu, Guangqiang Shi, Hui Jiang, Ruichun Dai, Wentao Jia, Xinyi Yang and Weicheng Gao

This paper aims to study the influence of cylindrical texture parameters on the lubrication performance of static and dynamic pressure thrust bearings (hereinafter referred to as…

Abstract

Purpose

This paper aims to study the influence of cylindrical texture parameters on the lubrication performance of static and dynamic pressure thrust bearings (hereinafter referred to as thrust bearings) and to optimize their lubrication performance using multiobjective optimization.

Design/methodology/approach

The influence of texture parameters on the lubrication performance of thrust bearings was studied based on the modified Reynolds equation. The objective functions are predicted through the BP neural network, and the texture parameters were optimized using the improved multiobjective ant lion algorithm (MOALA).

Findings

Compared with smooth surface, the introduction of texture can improve the lubrication properties. Under the optimization of the improved algorithm, when the texture diameter, depth, spacing and number are approximately 0.2 mm, 0.5 mm, 5 mm and 34, respectively, the loading capacity is increased by around 27.7% and the temperature is reduced by around 1.55°C.

Originality/value

This paper studies the effect of texture parameters on the lubrication properties of thrust bearings based on the modified Reynolds equation and performs multiobjective optimization through an improved MOALA.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 October 2023

Mallikarjun S. Bhandiwad, B.M. Dodamani and Deepak M.D.

The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or…

Abstract

Purpose

The present work involves analytical and experimental investigation of sloshing in a two-dimensional rectangular tank including the effect of porous baffles to control and/or reduce the wave motion in the sloshing tank. The purpose of this study is to assess the analytical solutions of the drag coefficient effect on porous baffles performance to track free surface motion variation in the sloshing tank by comparison with experimental shake table tests under a range of sway excitation.

Design/methodology/approach

The linear second-order ordinary differential equations for liquid sloshing in the rectangular tank were solved using Newmark’s beta method and obtained the analytical solutions for liquid sloshing with dual vertical porous baffles of full submergence depths in a sway-oscillated rectangular tank following the methodology similar to Warnitchai and Pinkaew (1998) and Tait (2008).

Findings

The porous baffles significantly reduce wave elevation in the varying filled levels of the tank compared to the baffle-free tank under the range of excitation frequencies. It is observed that the Reynolds number-dependent drag coefficient for porous baffles in the tank can significantly reduce the sloshing elevations and is found to be effective to achieve higher damping compared to the porosity-dependent drag coefficient for porous baffles in the sloshing tank. The analytical model’s response to free surface elevation variations in the sloshing tank was compared with the experiment’s test results. The analytical results matched with shake table test results with a quantitative difference near the first resonant frequency.

Research limitations/implications

The scope of the study is limited to porous baffles performance under range sway motion and three different filling levels in the tank. The porous baffle performance includes Reynolds number dependent drag coefficient to explore the damping effect in the sloshing tank.

Originality/value

The porous baffles with low-level porosities in the sloshing tank have many engineering applications where the first resonant mode of sloshing in the tank is more important. The porous baffle drag coefficient is an important parameter to study the baffle’s damping effect in sloshing tanks. Hence, obtained analytical solution for liquid sloshing in the rectangular tank with Reynolds number as well as porosity-dependent drag coefficient (model 1) and porosity-dependent drag coefficient porous baffles (model 2) performance is discussed. The model’s test results were validated using a series of shake table sloshing experiments for three fill levels in the tank with sway motion at various excitation frequencies covering the first four sloshing resonant modes.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 8 August 2023

Samir Ouchene, Arezki Smaili and Hachimi Fellouah

This paper aims to investigate the problem of estimating the angle of attack (AoA) and relative velocity for vertical axis wind turbine (VAWT) blades from computational fluid…

Abstract

Purpose

This paper aims to investigate the problem of estimating the angle of attack (AoA) and relative velocity for vertical axis wind turbine (VAWT) blades from computational fluid dynamics data.

Design/methodology/approach

Two methods are implemented as function objects within the OpenFOAM framework for estimating the blade’s AoA and relative velocity. For the numerical analysis of the flow around and through the VAWT, 2 D unsteady Reynolds-averaged Navier–Stokes (URANS) simulations are carried out and validated against experimental data.

Findings

To gain a better understanding of the complex flow features encountered by VAWT blades, the determination of the AoA is crucial. Relying on the geometrically-derived AoA may lead to wrong conclusions about blade aerodynamics.

Practical implications

This study can lead to the development of more robust optimization techniques for enhancing the variable-pitch control mechanism of VAWT blades and improving low-order models based on the blade element momentum theory.

Originality/value

Assessment of the reliability of AoA and relative velocity estimation methods for VAWT’ blades at low-Reynolds numbers using URANS turbulence models in the context of dynamic stall and blade–vortex interactions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2024

Shiang-Wuu Perng, Horng Wen Wu and De-An Huang

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Abstract

Purpose

The purpose of this study is to advance turbulent thermal convection inside the constant heat-flux round tube inserted by multiple perforated twisted tapes.

Design/methodology/approach

The novel design of this study is accomplished by inserting several twisted tapes and drilling some circular perforations near the tape edge (C1, C3, C5: solid tapes; C2, C4, C6: perforated tapes). The turbulence flow appearances and thermal convective features are examined for various Reynolds numbers (8,000–14,000) using the renormalization group (RNG) κε turbulent model and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm.

Findings

The simulated outcomes reveal that inserting more perforated-twisted tapes into the heated round tube promotes turbulent thermal convection effectively. A swirling flow caused by the twisted tapes to produce the secondary flow jets between two reverse-spin tapes can combine with the main flow passing through the perforations at the outer edge to enhance the vortex flow. The primary factors are the quantity of twisted tapes and with/without perforations, as the perforation ratio remains at 2.5 in this numerical work. Weighing friction along the tube, C6 (four reverse-spin perforated-twisted tapes) brings the uppermost thermal-hydraulic performance of 1.23 under Re = 8,000.

Research limitations/implications

The constant thermo-hydraulic attributes of liquid water and the steady Newtonian fluid are research limitations for this simulated work.

Practical implications

The simulated outcomes will avail the inner-pipe design of a heat exchanger inserted by multiple perforated twisted tapes to enhance superior heat transfer.

Originality/value

These twisted tapes form tiny circular perforations along the tape edge to introduce the fluid flow through these bores and combine with the secondary flow induced between two reverse-spin tapes. This scheme enhances the swirling flow, turbulence intensity and fluid mixing to advance thermal convection since larger perforations cannot produce large jet velocity or the position of perforations is too far from the tape edge to generate a separated flow. Consequently, this work contributes a valuable cooling mechanism toward thermal engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 April 2024

Qingyang Wang, Weifeng Wu, Ping Zhang, Chengqiang Guo and Yifan Yang

To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on…

Abstract

Purpose

To guide the stable radius clearance choice of water-lubricated bearings for single screw compressors, this paper aims to analyze the effects of turbulence and cavitation on bearing performance under two conditions of specified external load and radius clearance.

Design/methodology/approach

A modified Reynolds equation considering turbulence and cavitation is adopted, based on the Jakobsson–Floberg–Olsson boundary condition, Ng–Pan model and turbulent factors. The equation is solved using the finite difference method and successive over-relaxation method to investigate the bearing performance.

Findings

The turbulent effect can increase the hydrodynamic pressure and cavitation. In addition, the turbulent effect can lead to an increase in the equilibrium radius clearance. The turbulent region exhibits a higher load capacity and cavitation rate. However, the increased cavitation negatively impacts the frictional coefficient and end flow rate. The impact of turbulence increases as the radius clearance decreases. As the rotating speed increases, the turbulence effect has a greater impact on the bearing characteristics.

Originality/value

The research can provide theoretical support for the design of water-lubricated journal bearings used in high-speed water-lubricated single screw compressors.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2024-0029/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 March 2024

Mohammad Dehghan Afifi, Bahram Jalili, Amirmohammad Mirzaei, Payam Jalili and Davood Ganji

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds…

Abstract

Purpose

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds and Prandtl numbers, radiation parameter, velocity slip parameter, energy dissipation parameter and viscosity parameter on the velocity and temperature profile are displayed numerically and graphically.

Design/methodology/approach

By using simplification, nonlinear differential equations are converted into ordinary nonlinear equations. Modeling is done in the Cartesian coordinate system. The finite element method (FEM) and the Akbari-Ganji method (AGM) are used to solve the present problem. The finite element model determines each parameter’s effect on the fluid’s velocity and temperature.

Findings

The results show that if the viscosity parameter increases, the temperature of the fluid increases, but the velocity of the fluid decreases. As can be seen in the figures, by increasing the permeability parameter, a reduction in velocity and an enhancement in fluid temperature are observed. When the Reynolds number increases, an increase in fluid velocity and temperature is observed. If the speed slip parameter increases, the speed decreases, and as the energy dissipation parameter increases, the temperature also increases.

Originality/value

When considering factors like thermal conductivity and variable viscosity in this context, they can significantly impact velocity slippage conditions. The primary objective of the present study is to assess the influence of thermal conductivity parameters and variable viscosity within a porous medium on ferrofluid behavior. This particular flow configuration is chosen due to the essential role of ferrofluids and their extensive use in engineering, industry and medicine.

Article
Publication date: 2 February 2024

Jagadesh Vardagala, Sreenadh Sreedharamalle, Ajithkumar Moorthi, Sucharitha Gorintla and Lakshminarayana Pallavarapu

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix…

Abstract

Purpose

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix. Electrically conducting biofluid flows with Ohmic heating have many biomedical and industrial applications. The purpose of this study is to provide the significance of the effects of Ohmic heating and viscous dissipation on electrically conducting Casson nanofluid flow driven by peristaltic pumping through a vertical porous channel.

Design/methodology/approach

In this analysis, the non-Newtonian properties of fluid will be characterized by the Casson fluid model. The long wavelength approach reduces the complexity of the governing system of coupled partial differential equations with non-linear components. Using a regular perturbation approach, the solutions for the flow quantities are established. The fascinating and essential characteristics of flow parameters such as the thermal Grashof number, nanoparticle Grashof number, magnetic parameter, Brinkmann number, permeability parameter, Reynolds number, Casson fluid parameter, thermophoresis parameter and Brownian movement parameter on the convective peristaltic pumping are presented and thoroughly addressed. Furthermore, the phenomenon of trapping is illustrated visually.

Findings

The findings indicate that intensifying the permeability and Casson fluid parameters boosts the temperature distribution. It is observed that the velocity profile is elevated by enhancing the thermal Grashof number and perturbation parameter, whereas it reduces as a function of the magnetic parameter and Reynolds number. Moreover, trapped bolus size upsurges for greater values of nanoparticle Grashof number and magnetic parameter.

Originality/value

There are some interesting studies in the literature to explain the nature of the peristaltic flow of non-Newtonian nanofluids under various assumptions. It is observed that there is no study in the literature as investigated in this paper.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 February 2024

Xiang Shen, Kai Zeng, Liming Yang, Chengyong Zhu and Laurent Dala

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of…

Abstract

Purpose

This paper aims to study passive control techniques for transonic flow over a backward-facing step (BFS) using square-lobed trailing edges. The study investigates the efficacy of upward and downward lobe patterns, different lobe widths and deflection angles on flow separation, aiming for a deeper understanding of the flow physics behind the passive flow control system.

Design/methodology/approach

Large Eddy Simulation and Reynolds-averaged Navier–Stokes were used to evaluate the results of the study. The research explores the impact of upward and downward patterns of lobes on flow separation through the effects of different lobe widths and deflection angles. Numerical methods are used to analyse the behaviour of transonic flow over BFS and compared it to existing experimental results.

Findings

The square-lobed trailing edges significantly enhance the reduction of mean reattachment length by up to 80%. At Ma = 0.8, the up-downward configuration demonstrates increased effectiveness in reducing the root mean square of pressure fluctuations at a proximity of 5-step height in the wake region, with a reduction of 50%, while the flat-downward configuration proves to be more efficient in reducing the root mean square of pressure fluctuations at a proximity of 1-step height in the near wake region, achieving a reduction of 71%. Furthermore, the study shows that the up-downward configuration triggers early spanwise velocity fluctuations, whereas the standalone flat-downward configuration displays less intense crosswise velocity fluctuations within the wake region.

Practical implications

The findings demonstrate the effectiveness of square-lobed trailing edges as passive control techniques, showing significant implications for improving efficiency, performance and safety of the design in aerospace and industrial systems.

Originality/value

This paper demonstrates that the square-lobed trailing edges are effective in reducing the mean reattachment length and pressure fluctuations in transonic conditions. The study evaluates the efficacy of different configurations, deflection angles and lobe widths on flow and provides insights into the flow physics of passive flow control systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 September 2023

Md Atiqur Rahman

The purpose of this experimental research was to examine a novel axial heat exchanger featuring swirling air movement over heated tubes. This apparatus is designed with perforated…

26

Abstract

Purpose

The purpose of this experimental research was to examine a novel axial heat exchanger featuring swirling air movement over heated tubes. This apparatus is designed with perforated circular baffle plates complemented by rectangular air deflectors operating at different inclination angles. The tubes were arranged in a consistent layout parallel to the longitudinal airflow. The deflector’s heightened air-side turbulence initiates the frenzied motion, escalating the surface heat transfer rate.

Design/methodology/approach

The tubes maintained a constant heat flux condition over the surface. In each baffle plate, eight deflectors with identical inclination angles were devised in a reverse position, forming a rotation of air inside a circular duct that held tubes (carrying hot water) which elevated air-side turbulence, thereby enhancing the rate of heat transference on the surface. The baffle plates were equally situated from each other at changing pitch ratios. The Reynolds quantity was preserved in the scope of 16,000–30,000. The performance of the heat exchanger considering pitch ratios and inclination angles was examined.

Findings

The research indicates that when examined under similar conditions, an exchanger with a deflector baffle plate shows a strong dependence on the pitch ratio and inclination angle with a mean rise of 0.19 times in thermal enhancement factor at an inclination angle of 30° and a pitch ratio of 1.2 contrasted with an exchanger with segmental baffle plates.

Originality/value

The result shows the dependence of pitch ratio, Reynolds number and inclination on the heat transfer and friction factor rate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 187