Search results

1 – 3 of 3
Article
Publication date: 14 February 2022

Kai Xiong, Chunling Wei and Peng Zhou

This paper aims to improve the performance of the autonomous optical navigation using relativistic perturbation of starlight, which is a promising technique for future space…

Abstract

Purpose

This paper aims to improve the performance of the autonomous optical navigation using relativistic perturbation of starlight, which is a promising technique for future space missions. Through measuring the change in inter-star angle due to the stellar aberration and the gravitational deflection of light with space-based optical instruments, the position and velocity vectors of the spacecraft can be estimated iteratively.

Design/methodology/approach

To enhance the navigation performance, an integrated optical navigation (ION) method based on the fusion of both the inter-star angle and the inter-satellite line-of-sight measurements is presented. A Q-learning extended Kalman filter (QLEKF) is designed to optimize the state estimate.

Findings

Simulations illustrate that the integrated optical navigation outperforms the existing method using only inter-star angle measurement. Moreover, the QLEKF is superior to the traditional extended Kalman filter in navigation accuracy.

Originality/value

A novel ION method is presented, and an effective QLEKF algorithm is designed for information fusion.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 July 2022

Jintian Hu, Jin Liu, Yidi Wang and Xiaolin Ning

This study aims to address the problem of the divergence of traditional inertial navigation system (INS)/celestial navigation system (CNS)-integrated navigation for ballistic…

Abstract

Purpose

This study aims to address the problem of the divergence of traditional inertial navigation system (INS)/celestial navigation system (CNS)-integrated navigation for ballistic missiles. The authors introduce Doppler navigation system (DNS) and X-ray pulsar navigation (XNAV) to the traditional INS/CNS-integrated navigation system and then propose an INS/CNS/DNS/XNAV deep integrated navigation system.

Design/methodology/approach

DNS and XNAV can provide velocity and position information, respectively. In addition to providing velocity information directly, DNS suppresses the impact of the Doppler effect on pulsar time of arrival (TOA). A pulsar TOA with drift bias is observed during the short navigation process. To solve this problem, the pulsar TOA drift bias model is established. And the parameters of the navigation filter are optimised based on this model.

Findings

The experimental results show that the INS/CNS/DNS/XNAV deep integrated navigation can suppress the drift of the accelerometer to a certain extent to improve the precision of position and velocity determination. In addition, this integrated navigation method can reduce the required accuracy of inertial navigation, thereby reducing the cost of missile manufacturing and realising low-cost and high-precision navigation.

Originality/value

The velocity information provided by the DNS can suppress the pulsar TOA drift, thereby improving the positioning accuracy of the XNAV. This reflects the “deep” integration of these two navigation methods.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 April 2020

Qun Shi, Wangda Ying, Lei Lv and Jiajun Xie

This paper aims to present an intelligent motion attitude control algorithm, which is used to solve the poor precision problems of motion-manipulation control and the problems of…

Abstract

Purpose

This paper aims to present an intelligent motion attitude control algorithm, which is used to solve the poor precision problems of motion-manipulation control and the problems of motion balance of humanoid robots. Aiming at the problems of a few physical training samples and low efficiency, this paper proposes an offline pre-training of the attitude controller using the identification model as a priori knowledge of online training in the real physical environment.

Design/methodology/approach

The deep reinforcement learning (DRL) of continuous motion and continuous state space is applied to motion attitude control of humanoid robots and the robot motion intelligent attitude controller is constructed. Combined with the stability analysis of the training process and control process, the stability constraints of the training process and control process are established and the correctness of the constraints is demonstrated in the experiment.

Findings

Comparing with the proportion integration differentiation (PID) controller, PID + MPC controller and MPC + DOB controller in the humanoid robots environment transition walking experiment, the standard deviation of the tracking error of robots’ upper body pitch attitude trajectory under the control of the intelligent attitude controller is reduced by 60.37 per cent, 44.17 per cent and 26.58 per cent.

Originality/value

Using an intelligent motion attitude control algorithm to deal with the strong coupling nonlinear problem in biped robots walking can simplify the control process. The offline pre-training of the attitude controller using the identification model as a priori knowledge of online training in the real physical environment makes up the problems of a few physical training samples and low efficiency. The result of using the theory described in this paper shows the performance of the motion-manipulation control precision and motion balance of humanoid robots and provides some inspiration for the application of using DRL in biped robots walking attitude control.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 3 of 3