Search results

1 – 10 of over 76000
Book part
Publication date: 13 December 2013

Bertrand Candelon, Elena-Ivona Dumitrescu, Christophe Hurlin and Franz C. Palm

In this article we propose a multivariate dynamic probit model. Our model can be viewed as a nonlinear VAR model for the latent variables associated with correlated binary…

Abstract

In this article we propose a multivariate dynamic probit model. Our model can be viewed as a nonlinear VAR model for the latent variables associated with correlated binary time-series data. To estimate it, we implement an exact maximum likelihood approach, hence providing a solution to the problem generally encountered in the formulation of multivariate probit models. Our framework allows us to study the predictive relationships among the binary processes under analysis. Finally, an empirical study of three financial crises is conducted.

Details

VAR Models in Macroeconomics – New Developments and Applications: Essays in Honor of Christopher A. Sims
Type: Book
ISBN: 978-1-78190-752-8

Keywords

Article
Publication date: 6 November 2017

Jiali Zhou, Bo Zhang and Dongyuan Qiu

This paper aims to analyze the frequency characteristics of wireless power transfer (WPT) systems with relay resonators in terms of the power delivered to the load and system…

Abstract

Purpose

This paper aims to analyze the frequency characteristics of wireless power transfer (WPT) systems with relay resonators in terms of the power delivered to the load and system efficiency. Based on the analytical results, system parameters can be optimized to achieve maximum power transfer and higher system efficiency.

Design/methodology/approach

Based on Kirchhoff’s voltage law equations, WPT systems with relay resonators are described by the coupled linear second-order differential equations. Splitting frequencies are estimated by using the matrix theory. In addition, critical coupling conditions are demonstrated based on discriminant analysis.

Findings

It was found that multi-maximum values exist for the power delivered to the load and total system efficiency owing to multiple eigenfrequencies of the system. Also, frequency conditions of maximum power transfer and system efficiency, as well as their critical coupling conditions, were quantitatively estimated.

Research limitations/implications

During our analytical process, we assume that quality factors of resonators in the system are high and the crossing coupling between resonators is negligible.

Originality/value

In previous works, the exact analysis of frequency characteristics is limited to WPT systems with two resonators. The appealing feature of this work lies in its ability to present a simplified analytical method with negligible approximation errors for WPT systems with relay resonators.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 May 2021

Sandang Guo, Yaqian Jing and Bingjun Li

The purpose of this paper is to make multivariable gray model to be available for the application on interval gray number sequences directly, the matrix form of interval…

Abstract

Purpose

The purpose of this paper is to make multivariable gray model to be available for the application on interval gray number sequences directly, the matrix form of interval multivariable gray model (IMGM(1,m,k) model) is constructed to simulate and forecast original interval gray number sequences in this paper.

Design/methodology/approach

Firstly, the interval gray number is regarded as a three-dimensional column vector, and the parameters of multivariable gray model are expressed in matrix form. Based on the dynamic gray action and optimized background value, the interval multivariable gray model is constructed. Finally, two examples and comparisons are carried out to verify the effectiveness of IMGM(1,m,k) model.

Findings

The model is applied to simulate and predict expert value, foreign direct investment, automobile sales and steel output, respectively. The results show that the proposed model has better simulation and prediction performance than another two models.

Practical implications

Due to the uncertainty information and continuous changing of reality, the interval gray numbers are used to characterize full information of original data. And the IMGM(1,m,k) model not only considers the characteristics of parameters changing with time but also takes into account information on lower, middle and upper bounds of interval gray numbers simultaneously to make better suitable for practical application.

Originality/value

The main contribution of this paper is to propose a new interval multivariable gray model, which considers the interaction between the lower, middle and upper bounds of interval numbers and need not to transform interval gray number sequences into real sequences. According to combining different characteristics of each bound of interval gray numbers, the matrix form of interval multivariable gray model is established to simulate and forecast interval gray numbers. In addition, the model introduces dynamic gray action to reflect the changes of parameters over time. Instead of white equation of classic MGM(1,m), the difference equation is directly used to solve the simulated and predicted values.

Details

Grey Systems: Theory and Application, vol. 12 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 4 November 2019

Du Hongwang, Wei Xiong, Wang Haitao and Wang Zuwen

In this paper, a novel and unified method for geometry configuration simulation of flexible cable under certain boundary conditions is presented. This methodology can be used to…

Abstract

Purpose

In this paper, a novel and unified method for geometry configuration simulation of flexible cable under certain boundary conditions is presented. This methodology can be used to realize cable assembly verification in any computer-aided design/manufacturing system. The modeling method, solution algorithm, geometry configuration simulation and experimental results are presented to prove the feasibility of this proposed methodology. The paper aims to discuss these issues.

Design/methodology/approach

Considering the gravity, bending and torsion, modeling of cable follows the Kirchhoff theory. For this purpose, Euler quaternions are used to describe its spatial geometry configuration by a carefully chosen set of coordinates. Then the cable is discretized by the FEM, and the equilibrium condition per element is computed. In this way, the global static behavior is independent of the discretization. The static evolution of the cable is obtained by numerical integration of the resulting Kirchhoff equations. Then the manner is demonstrated, in which this system of equations can be decoupled and efficiently solved. Geometry configuration simulation examples with different boundary conditions are presented. Finally, experiment validation are given to describe the effectiveness of the models and algorithms.

Findings

The method presented in this paper can be adapted to computer-aided assembly verification of flexible cable. The experimental results indicate that both of the model and algorithm are efficient and accurate.

Research limitations/implications

The method should be extended to flexible cables with multiple branches and more complex constraints (holes, curved surfaces and clamps) and non-circular sections. Dynamic assembly process simulation based on the Kirchhoff theory must be considered in the future.

Originality/value

Unlike in previous approaches, the cable behavior was independent of the underlying discretization, and the finite element approach enables physically plausible cable assembly verification.

Details

Assembly Automation, vol. 40 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Content available
Book part
Publication date: 16 September 2022

Pedro Brinca, Nikolay Iskrev and Francesca Loria

Since its introduction by Chari, Kehoe, and McGrattan (2007), Business Cycle Accounting (BCA) exercises have become widespread. Much attention has been devoted to the results of

Abstract

Since its introduction by Chari, Kehoe, and McGrattan (2007), Business Cycle Accounting (BCA) exercises have become widespread. Much attention has been devoted to the results of such exercises and to methodological departures from the baseline methodology. Little attention has been paid to identification issues within these classes of models. In this chapter, the authors investigate whether such issues are of concern in the original methodology and in an extension proposed by Šustek (2011) called Monetary Business Cycle Accounting. The authors resort to two types of identification tests in population. One concerns strict identification as theorized by Komunjer and Ng (2011) while the other deals both with strict and weak identification as in Iskrev (2010). Most importantly, the authors explore the extent to which these weak identification problems affect the main economic takeaways and find that the identification deficiencies are not relevant for the standard BCA model. Finally, the authors compute some statistics of interest to practitioners of the BCA methodology.

Details

Essays in Honour of Fabio Canova
Type: Book
ISBN: 978-1-80382-636-3

Keywords

Book part
Publication date: 30 September 2014

Shiyi Chen and Buhong Zheng

This paper applies a recently developed method of ranking socioeconomic inequality in health to ranking U.S. happiness from 1994 to 2012 using the GSS data. We also compare…

Abstract

This paper applies a recently developed method of ranking socioeconomic inequality in health to ranking U.S. happiness from 1994 to 2012 using the GSS data. We also compare happiness between subgroups as decomposed by gender, race, and age. We establish and test a monotone condition of happiness – a richer person is likely to be happier. Under the monotone condition, standard tools of welfare and inequality ranking can be applied straightforwardly.

Details

Economic Well-Being and Inequality: Papers from the Fifth ECINEQ Meeting
Type: Book
ISBN: 978-1-78350-556-2

Keywords

Article
Publication date: 16 April 2020

Tianyun Li, Weiguo Fang, Desheng Dash Wu and Baofeng Zhang

The paper aims to explore the optimal strategies of inventory financing when the risk-averse retailer has different objectives, in the presence of multi-risk, i.e. demand risk…

Abstract

Purpose

The paper aims to explore the optimal strategies of inventory financing when the risk-averse retailer has different objectives, in the presence of multi-risk, i.e. demand risk, non-operational risk and retailer's strategic default risk.

Design/methodology/approach

This paper develops an inventory financing model consisting of a bank and a risk-averse retailer with strategic default. This paper considers two scenarios, i.e. the capital-constrained retailer cares about its profit or firm value. In the first scenario, the bank acts as a Stackelberg leader determining its interest rate, and the retailer acts as a follower determining its pledged quantity. In the second one, the bank capital market is perfectly competitive. Lagrange multiplier method is adopted to solve the optimization.

Findings

The optimal strategies in inventory financing scheme in two scenarios are derived. Only when the initial stock is relatively high, the retailer pledges part of the initial stock. Retailer's risk aversion reduces its pledged quantity and performance. The strategic default reduces its profit. When it is relatively high, the bank refuses to offer the loan.

Practical implications

Analytical inventory and financing strategies are specified to help retailers and banks to better understand the interaction of finance and operations management and to better respond to multi-risk.

Originality/value

New results and managerial insights are derived by incorporating partially endogenous strategic default and risk aversion into inventory financing, which enriches the interfaces of operations management and finance.

Details

Industrial Management & Data Systems, vol. 120 no. 5
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 15 September 2022

Natiq Yaseen Taha Al-Menahlawi, Mohammad Reza Khoshravan Azar, Tajbakhsh Navid Chakherlou and Hussein Al-Bugharbee

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in…

Abstract

Purpose

The purpose of this study is a numerical simulation and an analytical analysis about the low-velocity impact on a functionally graded porous plate with porosity distribution in the thickness direction. In this article, polymethyl methacrylate is used for matrix, and single-walled carbon nanotube (CNTs) (10,10) with consideration agglomeration sizes and lumping of CNT inside the agglomerations is applied for reinforcement.

Design/methodology/approach

In analytical formulation, the non-linear Hertz contact law is applied for interaction between projectile and plate surface. High-order shear deformation plate theory is developed, and energy of the system for impactor and plate is written. The governing equations are derived using Ritz method and Lagrange equations and are solved using the fourth-order Runge–Kutta method. Also, ABAQUS finite element model of functionally graded porous plate with all edges simply supported and reinforced by CNT under low-velocity impact is simulated and is compared with those is achieved in the present analytical approach.

Findings

In parametric studies, the influence of porosity distribution patterns include uniform, non-uniform symmetric and non-uniform asymmetric on the histories of contact force and impactor displacement of simply supported plate reinforced by CNT are presented. Eventually, the effects of porosity coefficient, impactor initial velocity, impactor radius and CNTs lumping inside agglomerations for non-uniform symmetric distribution patterns are discussed in impact event in detail.

Originality/value

In this paper, the effect of combination of polymethyl methacrylate and CNTs with consideration agglomeration sizes and lumping of CNTs inside the agglomerations in the form of a functionally graded porous plate is studied in the problem of low-velocity impact analysis.

Article
Publication date: 9 February 2023

Vipin Gupta, Rajesh Kumar, Rajneesh Kumar and M.S. Barak

This paper aims to study the energy ratios of plane waves on an interface of nonlocal thermoelastic halfspace (NTS) and nonlocal orthotropic piezothermoelastic half-space (NOPS).

Abstract

Purpose

This paper aims to study the energy ratios of plane waves on an interface of nonlocal thermoelastic halfspace (NTS) and nonlocal orthotropic piezothermoelastic half-space (NOPS).

Design/methodology/approach

The memory-dependent derivatives (MDDs) approach with a hyperbolic two-temperature (HTT), three-phase lag theory is used here to study how the energy ratios change at the interface with the angle of incidence.

Findings

Plane waves that travel through NTS and hit the interface as a longitudinal wave, a thermal wave, or a transversal wave send four waves into the NOPS medium and three waves back into the NTS medium. The amplitude ratios of the different waves that are reflected and transmitted are used to calculate the energy ratios of the waves. It is observed that these ratios are affected by the HTT, nonlocal and MDD parameters.

Research limitations/implications

The energy ratios correspond to four distinct models; nonlocal HTT with memory, nonlocal HTT without memory, local HTT with memory and nonlocal classical-two-temperature with memory concerning the angle of incidence from 0 degree to 90 degree.

Practical implications

This model applies to several fields, including earthquake engineering, soil dynamics, high-energy particle physics, nuclear fusion, aeronautics and other fields where nonlocality, MDD and conductive temperature play an important role.

Originality/value

The authors produced the submitted document entirely on their initiative, with equal contributions from all of them.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1986

HENRI PRADE

In this paper a new approach is proposed for dealing with uncertainty in reasoning. A numerical quantification based on possibility theory is used in the representation of…

Abstract

In this paper a new approach is proposed for dealing with uncertainty in reasoning. A numerical quantification based on possibility theory is used in the representation of uncertain facts or rules. The chaining of uncertain rules and the combination of results obtained from different chains of inference, are discussed at length. Only min or max operations are used in the chaining and in the combining processes for computing the possibility degrees corresponding to the different alternatives. Partial similarities with other approaches are pointed out.

Details

Kybernetes, vol. 15 no. 1
Type: Research Article
ISSN: 0368-492X

1 – 10 of over 76000