Search results

1 – 4 of 4
Article
Publication date: 18 October 2021

Shuchen Tian, Hui Cao, Zhou Yang, Yuzhen Zhao, Wanli He and Hong Gao

Currently, conjugated nonlinear optical (NLO) materials suffer from the drawbacks of complex manufacturing process and high cost. To further study the NLO materials with…

Abstract

Purpose

Currently, conjugated nonlinear optical (NLO) materials suffer from the drawbacks of complex manufacturing process and high cost. To further study the NLO materials with cost-effective, it is necessary to prepare new NLO materials with satisfactory performance.

Design/methodology/approach

Pyrene derivatives with good third-order NLO properties were synthesized by combining pyrene compounds with TCNE, TCNQ, F4-TCNQ and other molecular systems by clicking chemical method.

Findings

The pyrene derivatives were characterized by ultraviolet spectrum and Z-scan. The charge-transfer of the D-p-A structures plays a key role in the absorption peak shifts. And the third-order nonlinear absorption of the products revealed good third-order NLO susceptibilities.

Research limitations/implications

The synthesis technology of pyrene derivatives is not mature enough and is in the preliminary exploration stage. So, the authors produced a relatively small number of samples and did not conduct a very comprehensive test.

Practical implications

This novel pyrene derivative is suggestive and can promote the exploration and development of the third-order nonlinear materials.

Originality/value

Four new pyrene derivatives were synthesized by selecting new molecular systems. Because of its good chemical properties and stable properties, it can be a reference for the development of third-order nonlinear materials in the future.

Article
Publication date: 3 August 2010

Robert Bogue

The purpose of this paper is to provide a review of recent developments in nanoelectronic devices, with an emphasis on the materials and fabrication technologies employed.

Abstract

Purpose

The purpose of this paper is to provide a review of recent developments in nanoelectronic devices, with an emphasis on the materials and fabrication technologies employed.

Design/methodology/approach

This paper focuses on three critical fields of nanoelectronics: integrated circuits (ICs), sensors and displays. It describes recent developments and considers the materials and techniques used in their fabrication.

Findings

This paper shows that nanoelectronic developments, particularly experimental ICs, are progressing very rapidly but all manner of different materials and non‐standard fabrication processes are involved. Major efforts are underway to develop simple and cost‐effective techniques which will allow the high volume production of suitable nanomaterials and their incorporation into commercial nanoelectronic devices.

Originality/value

The paper provides an up‐to‐date review of nanoelectronic device developments and fabrication technologies.

Details

Assembly Automation, vol. 30 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 19 October 2022

Fatimah A.M. Al-Zahrani

This paper aims to prepare a new donor–π–acceptor (D–π–A) and acceptor–π– D–π–A (A–π–D–π–A) phenothiazine (PTZ) in conjugation with vinyl isophorone (PTZ-1 and PTZ-2) were…

Abstract

Purpose

This paper aims to prepare a new donor–π–acceptor (D–π–A) and acceptor–π– D–π–A (A–π–D–π–A) phenothiazine (PTZ) in conjugation with vinyl isophorone (PTZ-1 and PTZ-2) were designed and their molecular shape, electrical structures and characteristics have been explored using the density functional theory (DFT). The results satisfactorily explain that the higher conjugative effect resulted in a smaller high occupied molecular orbital–lowest unoccupied molecular orbital gap (Eg). Both compounds show intramolecular charge transfer (ICT) transitions in the ultraviolet (UV)–visible range, with a bathochromic shift and higher absorption oscillator strength, as determined by DFT calculations.

Design/methodology/approach

The produced PTZ-1 and PTZ-2 sensors were characterized using various spectroscopic methods, including Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy (1H/13CNMR). UV–visible absorbance spectra of the generated D–π–A PTZ-1 and A–π–D–π–A PTZ-2 dyes were explored in different solvents of changeable polarities to illustrate positive solvatochromism correlated to intramolecular charge transfer.

Findings

The emission spectra of PTZ-1 and PTZ-2 showed strong solvent-dependent band intensity and wavelength. Stokes shifts were monitored to increase with the increase of the solvent polarity up to 4122 cm−1 for the most polar solvent. Linear energy-solvation relationship was applied to inspect solvent-dependent Stokes shifting. Quantum yield (ф) of PTZ-1 and PTZ-2 was also explored. The maximum UV–visible absorbance wavelengths were detected at 417 and 419 nm, whereas the fluorescence intensity was monitored at 586 and 588 nm.

Originality/value

The PTZ-1 and PTZ-2 dyes leading to colorimetric and emission spectral changes together with a color shift from yellow to red.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 December 2023

Halime Morovati, Mohammad Reza Noorbala, Mansoor Namazian, Hamid R. Zare and Ahmad Ali Dehghani-Firouzabadi

The main purpose of the present work is to introduce two new Schiff bases as corrosion inhibitors (CIs) for carbon steel (CS). The anti-corrosion performance of these Schiff bases…

Abstract

Purpose

The main purpose of the present work is to introduce two new Schiff bases as corrosion inhibitors (CIs) for carbon steel (CS). The anti-corrosion performance of these Schiff bases having N and S heteroatoms in their structures was investigated and compared in 2 M HCl electrolyte. The inhibitory activity of these Schiff bases was also assessed.

Design/methodology/approach

Common electrochemical assays like potentiodynamic polarization and electrochemical impedance measurements were used to evaluate the ability of compounds in reduction of the rate of corrosion. Quantum chemical calculations (QCCs) were also used to examine the corrosion inhibitive and the process related to the electrical and structural characteristics of the molecules acting as CIs.

Findings

The electrochemical measurements indicate that both Schiff bases acted as the efficient CIs of CS in 2 M HCl electrolyte. The adsorption of the Schiff base on the surface of the CS caused the corrosion to be inhibited. The change of Gibbs energies indicated that both physical and chemical interactions are involved in the adsorption of NNS and SNS on CS surfaces. The predicted QCCs of the CIs neutral and positively charged versions were well-aligned with those obtained by electrochemical experiments.

Originality/value

Using electrochemical experiments and quantum chemical modelings, two new Schiff bases, N-2-((2-nitrophenyl)thio)phenyl)-1-(pyrrole-2-yl)methanimine (NNS) and N-2-((2-nitrophenyl)thio)phenyl)-1-(thiophen-2-yl)methanimine (SNS), were evaluated as anti-corrosion agents for CS in 2 M HCl electrolyte. The DFT calculations were considered to compute the quantum chemical parameters of the inhibitors.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 4 of 4