Search results

1 – 10 of 360
Article
Publication date: 15 May 2019

Changjin Xu, Maoxin Liao and Peiluan Li

The purpose of this paper is to investigate the weighted pseudo-almost periodic solutions of shunting inhibitory cellular neural networks (SICNNs) with time-varying delays and…

Abstract

Purpose

The purpose of this paper is to investigate the weighted pseudo-almost periodic solutions of shunting inhibitory cellular neural networks (SICNNs) with time-varying delays and distributed delays.

Design/methodology/approach

The principle of weighted pseudo-almost periodic functions and some new mathematical analysis skills are applied.

Findings

A set of sufficient criteria which guarantee the existence and exponential stability of the weighted pseudo-almost periodic solutions of the considered SICNNs are established.

Originality/value

The derived results of this paper are new and complement some earlier works. The innovation of this paper concludes two points: a new sufficient criteria guaranteeing the existence and exponential stability of the weighted pseudo-almost periodic solutions of SICNNs are established; and the ideas of this paper can be applied to investigate some other similar neural networks.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 23 November 2018

Tarun Kansal

The purpose of this paper to construct the fundamental solution of partial differential equations in the generalized theory of thermoelastic diffusion materials with double…

Abstract

Purpose

The purpose of this paper to construct the fundamental solution of partial differential equations in the generalized theory of thermoelastic diffusion materials with double porosity.

Design/methodology/approach

The paper deals with the study of pseudo oscillations in the generalized theory of thermoelastic diffusion materials with double porosity.

Findings

The paper finds the fundamental solution of partial differential equations in terms of elementary functions.

Originality/value

Assuming the displacement vector, volume fraction fields, temperature change and chemical potential functions in terms of oscillation frequency in the governing equations, pseudo oscillations have been studied and finally the fundamental solution of partial differential equations in case of pseudo oscillations in terms of elementary functions has been constructed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 23 December 2020

Souad Marzougui, M. Bouabid, Fateh Mebarek-Oudina, Nidal Abu-Hamdeh, Mourad Magherbi and K. Ramesh

The purpose of this paper is to evaluate the temperature, the Dirichlet conditions have been considered to the parallel horizontal plates. The model of generalized…

226

Abstract

Purpose

The purpose of this paper is to evaluate the temperature, the Dirichlet conditions have been considered to the parallel horizontal plates. The model of generalized Brinkman-extended Darcy with the Boussinesq approximation is considered and the governing equations are computed by COMSOL multiphysics.

Design/methodology/approach

In the current study, the thermodynamic irreversible principle is applied to study the unsteady Poiseuille–Rayleigh–Bénard (PRB) mixed convection in a channel (aspect ratio A = 5), with the effect of a uniform transverse magnetic field.

Findings

The effects of various flow parameters on the fluid flow, Hartmann number (Ha), Darcy number (Da), Brinkman number (Br) and porosity (ε), are presented graphically and discussed. Numerical results for temperature and velocity profiles, entropy generation variations and contour maps of streamlines, are presented as functions of the governing parameter mentioned above. Basing on the generalized Brinkman-extended Darcy formulation, which allows the satisfaction of the no-slip boundary condition on a solid wall, it is found that the flow field and then entropy generation is notably influenced by the considering control parameters. The results demonstrate that the flow tends toward the steady-state with four various regimes, which strongly depends on the Hartman and Darcy numbers variations. Local thermodynamic irreversibilities are more confined near the active top and bottom horizontal walls of the channel when increasing the Da and decreasing the Hartmann number. Entropy generation is also found to be considerably affected by Brinkman number variation.

Originality/value

In the present work, we are presenting our investigations on the influence of a transverse applied external magnetohydrodynamic on entropy generation at the unsteady laminar PRB flow of an incompressible, Newtonian, viscous electrically conducting binary gas mixture fluid in porous channel of two horizontal heated plates. The numerical solutions for the liquid velocity, the temperature distribution and the rates of heat transport and entropy generation are obtained and are plotted graphically.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 17 August 2021

Enoch Bessah, AbdulGaniy Olayinka Raji, Olalekan John Taiwo, Sampson Kwaku Agodzo, Olusola Oluwayemisi Ololade, Alexandre Strapasson and Emmanuel Donkor

This study aims to assess gender-based differences on farmers’ perception of impacts and vulnerability to climate change and the implementation of adaptation strategies in the Pra…

4249

Abstract

Purpose

This study aims to assess gender-based differences on farmers’ perception of impacts and vulnerability to climate change and the implementation of adaptation strategies in the Pra River Basin of Ghana, while also providing lessons for other Sub-Saharan nations and regions with similar conditions.

Design/methodology/approach

The study used semi-structured interviews and questionnaires to collect data from 344 farmers, 64 participants in focus group discussions and 6 agriculture extension officers (key informants) from 10 districts in the Pra River Basin of Ghana.

Findings

Results showed several differences in how climate change is perceived and tackled by male and female genders. In the perception of male farmers, for example, they were found to be more vulnerable to increased temperature, and changes in rainfall and growing season, whereas female farmers on average were considered to be less resilient to floods and droughts for different reasons. Moreover, floods posed higher risks to farming than other climate change impacts. Gender roles had a significant correlation with the type of adaptation strategies practised. Men adopted agrochemicals more often than women, as an adaptation strategy.

Research limitations/implications

Gender-differentiated interventions should be incorporated in the national climate change action plan for sustainable development in a rain-fed agricultural economy such as Ghana. The study recommends several actions to promote gender equity in the assessed region.

Originality/value

This research assessed the gender differentials in climate trends, impact, vulnerability and adaptation based on primary data collected between April and May 2019 and compared the results with climate data in the basin for the period 1991–2014. It is an empirical study focused on primary data analysis obtained in loco by authors, involving approximately 400 participants.

Details

International Journal of Climate Change Strategies and Management, vol. 13 no. 4/5
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 18 May 2010

K.B. Dada and E. Momoniat

The purpose of this paper is to derive a dynamic equation for modelling the behaviour of smectic‐C liquid crystals under the effect of an electric field.

Abstract

Purpose

The purpose of this paper is to derive a dynamic equation for modelling the behaviour of smectic‐C liquid crystals under the effect of an electric field.

Design/methodology/approach

The model equation is solved using a finite difference approximation, method of lines and pseudo‐spectral methods. The solutions are compared for accuracy and efficiency. Comparison is made of the efficiency of finite differences, method of lines and pseudo‐spectral methods.

Findings

The Fourier pseudo‐spectral method is shown to be the most efficient approach.

Originality/value

This work is original; a computational comparison of numerical schemes applied to liquid crystals has not been found in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 September 2023

Prabhakaran Koothu Kesavan, Umashankar Subramaniam and Dhafer Jaber Almakhles

This paper aims to present a cascaded pseudo derivative feedback (PDF) plus pseudo derivative feedback plus pseudo derivative feedforward (PDFF) controller for a permanent magnet…

Abstract

Purpose

This paper aims to present a cascaded pseudo derivative feedback (PDF) plus pseudo derivative feedback plus pseudo derivative feedforward (PDFF) controller for a permanent magnet synchronous motor (PMSM) to improve the transient response of the system.

Design/methodology/approach

Proportional integral (PI) plus PI controller and the proposed PDF plus PDFF controller are designed, stability analysis is performed using the extended root locus method, and the effect of the damping coefficient is also extensively studied to validate the robustness of the proposed controller.

Findings

When compared to a cascaded PI plus PI controller, the proposed control approach has a much shorter settling time for the entire system and a 50% reduction in overshoot in stator current under extensive variations in speed with load disturbance.

Originality/value

The proposed controller is programmed into an FPGA Altera Cyclone II and applied to a 1.5 kW laboratory prototype PMSM drive. The effectiveness of the proposed methods has been demonstrated experimentally throughout a wide variable speed range, from 0 to 157 rad/s at different load conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 October 2005

Alessio Bonelli and Oreste S. Bursi

To propose novel predictor‐corrector time‐integration algorithms for pseudo‐dynamic testing.

Abstract

Purpose

To propose novel predictor‐corrector time‐integration algorithms for pseudo‐dynamic testing.

Design/methodology/approach

The novel predictor‐corrector time‐integration algorithms are based on both the implicit and the explicit version of the generalized‐α method. In the non‐linear unforced case second‐order accuracy, stability in energy, energy decay in the high‐frequency range as well as asymptotic annihilation are distinctive properties of the generalized‐α scheme; while in the non‐linear forced case they are the limited error near the resonance in terms of frequency location and intensity of the resonant peak. The implicit generalized‐α algorithm has been implemented in a predictor‐one corrector form giving rise to the implicit IPC‐ρ method, able to avoid iterative corrections which are expensive from an experimental standpoint and load oscillations of numerical origin. Moreover, the scheme embodies a secant stiffness formula able to approximate closely the actual stiffness of a structure. Also an explicit algorithm has been implemented, the EPC‐ρb method, endowed with user‐controlled dissipation properties. The resulting schemes have been tested experimentally both on a two‐ and on a six‐degrees‐of‐freedom system, exploiting substructuring techniques.

Findings

The analytical findings and the tests have indicated that the proposed numerical strategies enhance the performance of the pseudo‐dynamic test (PDT) method even in an environment characterized by considerable experimental errors. Moreover, the schemes have been tested numerically on strongly non‐linear multiple‐degrees‐of‐freedom systems reproduced with the Bouc‐Wen hysteretic model, showing that the proposed algorithms reap the benefits of the parent generalized‐α methods.

Research limitations/implications

Further developments envisaged for this study are the application of the IPC‐ρ method and of EPC‐ρb scheme to partitioned procedures for high‐speed pseudo‐dynamic testing with substructuring.

Practical implications

The implicit IPC‐ρ and the explicit EPC‐ρb methods allow a user to have defined dissipation which reduces the effects of experimental error in the PDT without needing onerous iterations.

Originality/value

The paper proposes novel time‐integration algorithms for pseudo‐dynamic testing. Thanks to a predictor‐corrector form of the generalized‐α method, the proposed schemes maintain a high computational efficiency and accuracy.

Details

Engineering Computations, vol. 22 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 3 May 2016

Nicola Massarotti, Michela Ciccolella, Gino Cortellessa and Alessandro Mauro

The purpose of this paper is to focus on the numerical analysis of transient free convection heat transfer in partially porous cylindrical domains. The authors analyze the…

Abstract

Purpose

The purpose of this paper is to focus on the numerical analysis of transient free convection heat transfer in partially porous cylindrical domains. The authors analyze the dependence of velocity and temperature fields on the geometry, by analyzing transient flow behavior for different values of cavity aspect ratio and radii ratio; both inner and outer radius are assumed variable in order to not change the difference ro-ri. Moreover, several Darcy numbers have been considered.

Design/methodology/approach

A dual time-stepping procedure based on the transient artificial compressibility version of the characteristic-based split algorithm has been adopted in order to solve the transient equations of the generalized model for heat and fluid flow through porous media. The present model has been validated against experimental data available in the scientific literature for two different problems, steady-state free convection in a porous annulus and transient natural convection in a porous cylinder, showing an excellent agreement.

Findings

For vertically divided half porous cavities, with Rayleigh numbers equal to 3.4×106 for the 4:1 cavity and 3.4×105 for the 8:1 cavity, the numerical results show that transient oscillations tend to disappear in presence of cylindrical geometry, differently from what happens for rectangular one. The magnitude of this phenomenon increases with radii ratio; the porous layer also affects the stability of velocity and temperature fields, as oscillations tend to decrease in presence of a porous matrix with lower value of the Darcy number.

Research limitations/implications

A proper analysis of partially porous annular cavities is fundamental for the correct estimation of Nusselt numbers, as the formulas provided for rectangular domains are not able to describe these problems.

Practical implications

The proposed model represents a useful tool for the study of transient natural convection problems in porous and partially porous cylindrical and annular cavities, typical of many engineering applications. Moreover, a fully explicit scheme reduces the computational costs and ensures flexibility.

Originality/value

This is the first time that a fully explicit finite element scheme is employed for the solution of transient natural convection in partially porous tall annular cavities.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 1994

R. Codina, U. Schäfer and E. Oñate

In this paper we consider several aspects related to the application ofthe pseudo‐concentration techniques to the simulation of mould fillingprocesses. We discuss, in particular…

Abstract

In this paper we consider several aspects related to the application of the pseudo‐concentration techniques to the simulation of mould filling processes. We discuss, in particular, the smoothing of the front when finite elements with interior nodes are employed and the evacuation of air through the introduction of temporary free wall nodes. The basic numerical techniques to solve the incompressible Navier—Stokes equations are also briefly described. The main features of the numerical model are the use of div‐stable velocity—pressure interpolations with discontinuous pressures, the elimination of the pressure via an iterative penalty formulation, the use of the SUPG approach to deal with convection‐dominated problems and the temporal integration using the generalized trapezoidal rule. At the end of the paper we present some numerical results obtained for a two‐dimensional test problem showing the ability of the method to capture complicated flow patterns.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 December 2018

Yuan Li, J. Zhang, Yudong Zhong, Xiaomin Shu and Yunqiao Dong

The Convolution Quadrature Method (CQM) has been widely applied to solve transient elastodynamic problems because of its stability and generality. However, the CQM suffers from…

Abstract

Purpose

The Convolution Quadrature Method (CQM) has been widely applied to solve transient elastodynamic problems because of its stability and generality. However, the CQM suffers from the problems of huge memory requirement in case of direct implementation in time domain or CPU time in case of its reformulation in Laplace domain. The purpose of this paper is to combine the CQM with the pseudo-initial condition method (PICM) to achieve a good balance between memory requirement and CPU time.

Design/methodology/approach

The combined methods first subdivide the whole analysis into a few sub-analyses, which is dealt with the PICM, namely, the results obtained by previous sub-analysis are used as the initial conditions for the next sub-analysis. In each sub-analysis, the time interval is further discretized into a number of sub-steps and dealt with the CQM. For non-zero initial conditions, the pseudo-force method is used to transform them into equivalent body forces. The boundary face method is employed in the numerical implementation. Three examples are analyzed. Results are compared with analytical solutions or FEM results and the results of reformulated CQM.

Findings

Results demonstrate that the computation time and the storage requirement can be reduced significantly as compared to the CQM, by using the combined approach.

Originality/value

The combined methods can be successfully applied to the problems of long-time dynamic response, which requires a large amount of computer memory when CQM is applied, while preserving the CQM stability. If the number of time steps is high, then the accuracy of the proposed approach can be deteriorated because of the pseudo-force method.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 360