Search results

1 – 10 of 20
Article
Publication date: 7 June 2022

Nayab Rasool Syed and Sashindra Kumar Kakoty

The purpose of this paper is to compare the spherical protruded and dimple textured journal bearings performance characteristics with the untextured bearing.

Abstract

Purpose

The purpose of this paper is to compare the spherical protruded and dimple textured journal bearings performance characteristics with the untextured bearing.

Design/methodology/approach

The governing Reynolds equation considering the mass conserving (JFO) boundary conditions is solved using the computationally efficient progressive mesh densification (PMD) method. The central difference scheme is used for the discretization of the governing Reynolds equation. The numerical code developed is validated with the experimental results available in the literature.

Findings

From this numerical study, it has been observed that the protruded textured journal bearing gives better performance compared to the dimple textured and untextured journal bearing for friction variable, whereas dimple textured journal bearing provides better performance compared to the protruded textured and untextured journal bearing for load carrying capacity and flow coefficient. For better performance, dimple and protruded textured bearings must be textured in second-half textured region configuration.

Practical implications

The results shown here would be quite useful for the researchers generally and the bearing designers particularly.

Originality/value

The load carrying capacity should be maximum whereas, the friction coefficient should be minimum and also the adequate flow of lubricant is necessary to maintain hydrodynamic lubrication and to remove the heat generated within the bearing due to friction, which impacts the bearing performance and life. Thus, this study would be significant in effective bearing design aspect.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 March 2023

Debajit Das and Sashindra Kumar Kakoty

This paper aims to investigate the effects of inertia of the lubricant on the performance parameters of journal bearings textured with spherical-shaped textures.

Abstract

Purpose

This paper aims to investigate the effects of inertia of the lubricant on the performance parameters of journal bearings textured with spherical-shaped textures.

Design/methodology/approach

The lubricant is assumed to be Newtonian, and the flow is considered laminar. Considering the lubricant inertia effects, the modified Reynolds equation is discretized using the finite difference method and solved with the Gauss–Seidel successive over-relaxation scheme using the progressive mesh densification method.

Findings

The results from this numerical study indicate that the lubricant inertia improves textured journal bearing performance characteristics significantly. The improvement is more significant in the case of heavily loaded bearings. Furthermore, it is observed that protruded texturing in journal bearings shows better results compared to dimple textured journal bearings.

Originality/value

Understanding the effect of lubricant inertia is essential for efficiently designing textured journal bearings. Thus, the results shown here would be helpful for the researchers and the bearing designers.

Details

Industrial Lubrication and Tribology, vol. 75 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Rahul Kumar, Mohammad Sikandar Azam, Subrata Kumar Ghosh and Hasim Khan

The aim of this paper is to study the effect of deterministic roughness and small elastic deformation of surface on flow rates, load capacity and coefficient of friction in…

Abstract

Purpose

The aim of this paper is to study the effect of deterministic roughness and small elastic deformation of surface on flow rates, load capacity and coefficient of friction in Rayleigh step bearing under thin film lubrication.

Design/methodology/approach

Reynolds equation, pressure-density relationship, pressure-viscosity relationship and film thickness equation are discretized using finite difference method. Progressive mesh densification (PMD) method is applied to solve the related equations iteratively.

Findings

The nature and shape of roughness play a significant role in pressure generation. It has been observed that square roughness dominates the pressure generation for all values of minimum film thickness. Deformation more than 100 nm in bounding surfaces influences the film formation and pressure distribution greatly. Divergent shapes of film thickness in step zone causes a delay of pressure growth and reduces the load capacity with decreasing film thickness. The optimum value of film thickness ratio and step ratios have been found out for the maximum load capacity and minimum coefficient of friction, which are notably influenced by elastic deformation of the surface.

Practical implications

It is expected that these findings will help in analysing the performance parameters of a Rayleigh step bearing under thin film lubrication more accurately. It will also help the designers, researchers and manufacturers of bearings.

Originality/value

Most of the previous studies have been limited to sinusoidal roughness and thick film lubrication in Rayleigh step bearing. Effect of small surface deformation due to generated pressure in thin film lubrication is significant, as it influences the performance parameters of the bearing. Different wave forms such as triangular, sawtooth, sinusoidal and square formed during finishing operations behaves differently in pressure generation. The analysis of combined effect of roughness and small surface deformation has been performed under thin film lubrication for Rayleigh step bearing using PMD as improved methods for direct iterative approach.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 March 2023

Lei Cao, Jianlin Cai, Cheng Wang, Tianyou Yang, Wei Zhou and Liwu Wang

The purpose of this study is to describe and observe the influence of boundary slip associated with an arbitrary entrainment angle on the contact lubrication properties of…

Abstract

Purpose

The purpose of this study is to describe and observe the influence of boundary slip associated with an arbitrary entrainment angle on the contact lubrication properties of ellipses.

Design/methodology/approach

Based on the modified Reynolds equation, the boundary slip of any angle is considered in the elliptic contact, and numerical simulation is carried out. In the above calculation, the progressive mesh densification method is used, which greatly reduces the computation time.

Findings

The results indicate that the variation of film thickness corresponding to different entrainment angles is distinct from those without considering boundary slip. In addition, boundary slip reduces the central film thickness and minimum film thickness, which makes the hydrodynamic pressure distribution smoother.

Originality/value

The present study focuses on the specific condition with the arbitrary direction of rolling and sliding velocity found in hypoid gears and worm, and some other components. The influence of boundary slip associated with arbitrary entrainment angle on the lubrication film thickness in elliptical contacts is first revealed, which improves a good understanding of elastohydrodynamic lubrication characteristics.

Details

Industrial Lubrication and Tribology, vol. 75 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 July 2021

Jiang Zhao, Zhengminqing Li, Hong Zhang and Rupeng Zhu

The purpose of this paper is to use a combination of numerical simulation and experiment to evaluate the performance of laser surface texturing (LST) in the field of gear…

429

Abstract

Purpose

The purpose of this paper is to use a combination of numerical simulation and experiment to evaluate the performance of laser surface texturing (LST) in the field of gear lubrication, and to more accurately predict the lubrication characteristics of different surfaces.

Design/methodology/approach

The method used in this paper is developed on the basis of the deterministic solution of the three-dimensional (3D) mixed elasto-hydrodynamic lubrication (EHL) model and the model parameters are corrected by friction test. The film pressure, film thickness and friction coefficient of different micro-textured tooth surfaces are predicted on the basis of accurate 3D mixed EHL models.

Findings

The results demonstrate that the micro-texture structure of the tooth surface can increase the local film thickness and enhance the lubricating performance of the tooth surface without drastically reducing the contact fatigue life. The stress distribution and friction characteristics of the tooth surface can be optimized by adjusting the micro-texture arrangement and the size of the micro-textures.

Originality/value

A new evaluation method using a 3D hybrid EHL model and friction test to predict the lubrication characteristics of LST is proposed, which can effectively improve the processing economy and save time.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2020-0423

Details

Industrial Lubrication and Tribology, vol. 73 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 December 2018

Zonglin Gu, Caichao Zhu, Huaiju Liu and Xuesong Du

This paper aims to compare the tribological performances of four different types of tooth surface finishing, namely, form grinding, generating grinding, super finishing and…

Abstract

Purpose

This paper aims to compare the tribological performances of four different types of tooth surface finishing, namely, form grinding, generating grinding, super finishing and grinding and coating, and to reveal the details at dry contact nodes.

Design/methodology/approach

Real measured roughness is input to a finite line contact mixed elastohydrodynamic lubrication model developed for helical gear pairs. Their tribological performances are compared. The variation throughout one meshing period is analyzed. The influence of the root mean square (RMS) is studied. The textures are also scaled to the same RMS values to make comparisons while excluding the influence of roughness amplitude.

Findings

Roughness is directly reflected in pressure and film thickness. Average film thickness sees major changes while entering and leaving the single-tooth-contact region. The textures have different performances even under the same RMS. Roughness peaks incurring dry contact are those higher than the smooth-situation film thickness plus the sum of variation in normal approach and elastic deformation compared with the smooth situation. To lower dry contact severity, the surface finishing process should take care of both the overall amplitude and the portion of peaks with maximum height. When RMS value is the same, the latter plays a decisive role.

Originality/value

This paper interprets the differences between the tribological performances of four different types of tooth surface finishing from the aspect of roughness features and presents a way to analyze the details at dry contact nodes.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 March 2018

Wei Pu, Jiaxu Wang, Guangwu Zhou, Ke Xiao and Junyang Li

The purpose of this study is to describe and observe the effect of surface topography associated with arbitrary directions of rolling and sliding velocities on the performance of…

Abstract

Purpose

The purpose of this study is to describe and observe the effect of surface topography associated with arbitrary directions of rolling and sliding velocities on the performance of lubricating films in elliptical contacts.

Design/methodology/approach

The most recently published mixed elastohydrodynamic (EHL) model by Pu and Zhu is used. Three different machined rough surfaces are discussed and the correlated inclined angle of surface velocity varies from 0° to 90° in the analyzed cases. These cases are carried out in a wide range of speeds (five orders of magnitude) while the simulated lubrication condition covers full-film and mixed EHL down to the boundary lubrication.

Findings

The results indicate that the variation of the average film thickness corresponding to different entrainment angles is distinct from those without considering surface roughness. In addition, the surface topography appears to have an immense effect on the lubrication film thickness in the exceptive situation.

Originality/value

This paper has not been published previously. Surface roughness has attracted much attention for many years owing to the significant influence on lubricating property. However, previous studies mainly focus on the counterformal contact with the same direction between surface velocity and principal axis of the contact zone. Little attention has been paid to the specific condition with the arbitrary direction of rolling and sliding velocities found in hypoid gears and worm, and some other components. The purpose of this study is to describe and observe the effect of surface topography associated with arbitrary directions of rolling and sliding velocities on the performance of lubricating films in elliptical contacts based on the most recently published mixed EHL model by Pu and Zhu.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 August 2022

Deepak Byotra and Sanjay Sharma

This study aims to investigate the performance improvement of journal bearing by applying the arc-shaped textures on various regions of bearing expressly full, second half and…

173

Abstract

Purpose

This study aims to investigate the performance improvement of journal bearing by applying the arc-shaped textures on various regions of bearing expressly full, second half and pressure increasing regions operating with and without nanoparticles in the lubricant.

Design/methodology/approach

The Reynolds equation is solved numerically by using the finite element method to obtain static performance parameters such as load-carrying capacity (LCC) and coefficient of friction (COF), which are then compared with untextured bearing at eccentricity ratios of 0.2 to 0.8. Aluminum oxide (Al2O3) and copper oxide (CuO) nanoparticles additives are used, and viscosity variation due to the addition of additives in the base lubricant is computed for considering the range of temperatures 50 to 90°C at a weight fraction of 0.1 to 0.5% by using an experimentally validated regression model.

Findings

The results indicate that the maximum LCC and the lower COF are found in the pressure-increasing region. A maximum increase of 34.42% is observed in the pressure-increasing region without nanoparticles, and furthermore, with the addition of Al2O3 and CuO nanoparticles in lubricants in the same region, the LCC increased to 21 and 24%, respectively.

Originality/value

Designers should use optimal parameters from the present work to achieve high bearing performance.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1995

C. Padra and M.J. Vénere

In this work an adaptive scheme to solve diffusion problems, usinglinear and quadratic triangles, is presented. The densification algorithm,based on the subdivision of the…

Abstract

In this work an adaptive scheme to solve diffusion problems, using linear and quadratic triangles, is presented. The densification algorithm, based on the subdivision of the selected elements, and the error estimator used are described first. We pay special attention to the behaviour of the estimator. It has two contributions: the residual term and the flux‐jump term. Babuska and co‐workers have shown that for bilinear quadrilterals, the first term is negligible, but for biquadratic, it is the dominant term. We show evidence suggesting that these results cannot be extended to triangular elements when the problem has a singular solution. We found, in this case, that if the flux‐jump term is neglected, the expected rate of convergence cannot be obtained. Finally, some remarks about the whole adaptive process are discussed.

Details

Engineering Computations, vol. 12 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2001

Jaroslav Mackerle

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing

1896

Abstract

Gives a bibliographical review of the finite element meshing and remeshing from the theoretical as well as practical points of view. Topics such as adaptive techniques for meshing and remeshing, parallel processing in the finite element modelling, etc. are also included. The bibliography at the end of this paper contains 1,727 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1990 and 2001.

Details

Engineering Computations, vol. 18 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 20