Search results

1 – 10 of over 6000
Article
Publication date: 14 December 2023

Maren Hinrichs, Loina Prifti and Stefan Schneegass

With production systems become more digitized, data-driven maintenance decisions can improve the performance of production systems. While manufacturers are introducing predictive…

Abstract

Purpose

With production systems become more digitized, data-driven maintenance decisions can improve the performance of production systems. While manufacturers are introducing predictive maintenance and maintenance reporting to increase maintenance operation efficiency, operational data may also be used to improve maintenance management. Research on the value of data-driven decision support to foster increased internal integration of maintenance with related functions is less explored. This paper explores the potential for further development of solutions for cross-functional responsibilities that maintenance shares with production and logistics through data-driven approaches.

Design/methodology/approach

Fifteen maintenance experts were interviewed in semi-structured interviews. The interview questions were derived based on topics identified through a structured literature analysis of 126 papers.

Findings

The main findings show that data-driven decision-making can support maintenance, asset, production and material planning to coordinate and collaborate on cross-functional responsibilities. While solutions for maintenance planning and scheduling have been explored for various operational conditions, collaborative solutions for maintenance, production and logistics offer the potential for further development. Enablers for data-driven collaboration are the internal synchronization and central definition of goals, harmonization of information systems and information visualization for decision-making.

Originality/value

This paper outlines future research directions for data-driven decision-making in maintenance management as well as the practical requirements for implementation.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 6 February 2024

Moslem Sheikhkhoshkar, Hind Bril El Haouzi, Alexis Aubry and Farook Hamzeh

In academics and industry, significant efforts have been made to lead planners and control teams in evaluating project performance and control. In this context, numerous control…

Abstract

Purpose

In academics and industry, significant efforts have been made to lead planners and control teams in evaluating project performance and control. In this context, numerous control metrics have been devised and put into practice, often with little emphasis on analyzing their underlying concepts. To cover this gap, this research aims to identify and analyze a holistic list of control metrics and their functionalities in the construction industry.

Design/methodology/approach

A multi-step analytical approach was conducted to achieve the study’s objectives. First, a holistic list of control metrics and their functionalities in the construction industry was identified. Second, a quantitative analysis based on social network analysis (SNA) was implemented to discover the most important functionalities.

Findings

The results revealed that the most important control metrics' functionalities (CMF) could differ depending on the type of metrics (lagging and leading) and levels of control. However, in general, the most significant functionalities include managing project progress and performance, evaluating the look-ahead level’s performance, measuring the reliability and stability of workflow, measuring the make-ready process, constraint management and measuring the quality of construction flow.

Originality/value

This research will assist the project team in getting a comprehensive sensemaking of planning and control systems and their functionalities to plan and control different dynamic aspects of the project.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 14 August 2023

Ariana Araújo, Anabela Carvalho Alves and Fernando Romero

This paper aims to present a conceptual model, called LOOP, an acronym for Leadership, Organization, Operation and People, regarding the pull system implementation in Lean…

Abstract

Purpose

This paper aims to present a conceptual model, called LOOP, an acronym for Leadership, Organization, Operation and People, regarding the pull system implementation in Lean companies. Lean should be holistically implemented to achieve the performance for what it is known. Pull is one of the Lean thinking principles, and it is the production control system underneath the Lean philosophy. However, to implement pull, an organizational transformation in companies’ different areas is needed.

Design/methodology/approach

This model was developed following up a case study of a representative example of a multinational company which has been implementing Lean for a long time but without achieving a well-succeeded pull implementation.

Findings

Based on that, the authors developed the LOOP model that is an integrated framework with the goal to promote a Lean culture, which includes four dimensions: leadership, organization, operation and people.

Originality/value

Based on the LOOP conceptual model, a different, and hopefully more effective, perspective is presented, establishing some proposals for the four dimensions and for the production and control system selection criteria to implement Lean.

Details

International Journal of Lean Six Sigma, vol. 15 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 5 February 2024

Swarup Mukherjee, Anupam De and Supriyo Roy

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk…

Abstract

Purpose

Identifying and prioritizing supply chain risk is significant from any product’s quality and reliability perspective. Under an input-process-output workflow, conventional risk prioritization uses a risk priority number (RPN) aligned to the risk analysis. Imprecise information coupled with a lack of dealing with hesitancy margins enlarges the scope, leading to improper assessment of risks. This significantly affects monitoring quality and performance. Against the backdrop, a methodology that identifies and prioritizes the operational supply chain risk factors signifies better risk assessment.

Design/methodology/approach

The study proposes a multi-criteria model for risk prioritization involving multiple decision-makers (DMs). The methodology offers a robust, hybrid system based on the Intuitionistic Fuzzy (IF) Set merged with the “Technique for Order Performance by Similarity to Ideal Solution.” The nature of the model is robust. The same is shown by applying fuzzy concepts under multi-criteria decision-making (MCDM) to prioritize the identified business risks for better assessment.

Findings

The proposed IF Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) for risk prioritization model can improve the decisions within organizations that make up the chains, thus guaranteeing a “better quality in risk management.” Establishing an efficient representation of uncertain information related to traditional failure mode and effects analysis (FMEA) treatment involving multiple DMs means identifying potential risks in advance and providing better supply chain control.

Research limitations/implications

In a company’s supply chain, blockchain allows data storage and transparent transmission of flows with traceability, privacy, security and transparency (Roy et al., 2022). They asserted that blockchain technology has great potential for traceability. Since risk assessment in supply chain operations can be treated as a traceability problem, further research is needed to use blockchain technologies. Lastly, issues like risk will be better assessed if predicted well; further research demands the suitability of applying predictive analysis on risk.

Practical implications

The study proposes a hybrid framework based on the generic risk assessment and MCDM methodologies under a fuzzy environment system. By this, the authors try to address the supply chain risk assessment and mitigation framework better than the conventional one. To the best of their knowledge, no study is found in existing literature attempting to explore the efficacy of the proposed hybrid approach over the traditional RPN system in prime sectors like steel (with production planning data). The validation experiment indicates the effectiveness of the results obtained from the proposed IF TOPSIS Approach to Risk Prioritization methodology is more practical and resembles the actual scenario compared to those obtained using the traditional RPN system (Kim et al., 2018; Kumar et al., 2018).

Originality/value

This study provides mathematical models to simulate the supply chain risk assessment, thus helping the manufacturer rank the risk level. In the end, the authors apply this model in a big-sized organization to validate its accuracy. The authors validate the proposed approach to an integrated steel plant impacting the production planning process. The model’s outcome substantially adds value to the current risk assessment and prioritization, significantly affecting better risk management quality.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 9 October 2023

Mingyao Sun and Tianhua Zhang

A real-time production scheduling method for semiconductor back-end manufacturing process becomes increasingly important in industry 4.0. Semiconductor back-end manufacturing…

Abstract

Purpose

A real-time production scheduling method for semiconductor back-end manufacturing process becomes increasingly important in industry 4.0. Semiconductor back-end manufacturing process is always accompanied by order splitting and merging; besides, in each stage of the process, there are always multiple machine groups that have different production capabilities and capacities. This paper studies a multi-agent based scheduling architecture for the radio frequency identification (RFID)-enabled semiconductor back-end shopfloor, which integrates not only manufacturing resources but also human factors.

Design/methodology/approach

The architecture includes a task management (TM) agent, a staff instruction (SI) agent, a task scheduling (TS) agent, an information management center (IMC), machine group (MG) agent and a production monitoring (PM) agent. Then, based on the architecture, the authors developed a scheduling method consisting of capability & capacity planning and machine configuration modules in the TS agent.

Findings

The authors used greedy policy to assign each order to the appropriate machine groups based on the real-time utilization ration of each MG in the capability & capacity (C&C) planning module, and used a partial swarm optimization (PSO) algorithm to schedule each splitting job to the identified machine based on the C&C planning results. At last, we conducted a case study to demonstrate the proposed multi-agent based real-time production scheduling models and methods.

Originality/value

This paper proposes a multi-agent based real-time scheduling framework for semiconductor back-end industry. A C&C planning and a machine configuration algorithm are developed, respectively. The paper provides a feasible solution for semiconductor back-end manufacturing process to realize real-time scheduling.

Details

IIMBG Journal of Sustainable Business and Innovation, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8500

Keywords

Article
Publication date: 22 March 2023

Cinzia Battistella, Thomas Bortolotti, Stefania Boscari, Fabio Nonino and Giulia Palombi

Diverse cultures may make people behave differently and this, in turn, can impact project management. While the relationship between culture and project success has been widely…

Abstract

Purpose

Diverse cultures may make people behave differently and this, in turn, can impact project management. While the relationship between culture and project success has been widely explored, there is a need of addressing the gap in the relationship between culture and project management performance outcomes, that is, the performance in implementing project management processes and practices. The purpose of this paper is to investigate this gap by studying the role of cultural dimensions on project management performance.

Design/methodology/approach

An explorative survey including 200 observations relating to the experiences of project managers with a big experience on projects involving many different national cultures has been conducted to collect primary data on the relationship between the nationality observed and the project management performance outcomes shown. Nationality has been used as a proxy to link individual cultural dimensions and project management performance.

Findings

The results of this paper show that individualism impacts project dynamics and project control positively. Moreover, masculinity impacts project dynamics positively, and uncertainty avoidance impacts project control negatively. When recognized, different cultural dimensions can drive project management performance outcomes. The increasing awareness on this topic can be a valid instrument to control the cultural effect and take advantage of it to enhance project success.

Originality/value

This study contributes to the theory of project management by recognizing linkages between cultural dimensions and project management performance. Moreover, this study overcomes the concept of nationality, focusing on individuals and their unique set of cultural dimensions.

Details

International Journal of Organizational Analysis, vol. 32 no. 1
Type: Research Article
ISSN: 1934-8835

Keywords

Article
Publication date: 23 March 2023

Haftu Hailu Berhe, Hailekiros Sibhato Gebremichael and Kinfe Tsegay Beyene

Existing conceptual, empirical and case studies evidence suggests that manufacturing industries find the joint implementation of Kaizen philosophy initiatives. However, the…

Abstract

Purpose

Existing conceptual, empirical and case studies evidence suggests that manufacturing industries find the joint implementation of Kaizen philosophy initiatives. However, the existing practices rarely demonstrated in a single framework and implementation procedure in a structure nature. This paper, therefore, aims to develop, validate and practically test a framework and implementation procedure for the implementation of integrated Kaizen in manufacturing industries to attain long-term improvement of operational, innovation, business (financial and marketing) processes, performance and competitiveness.

Design/methodology/approach

The study primarily described the problem, extensively reviewed the current state-of-the-art literature and then identified a gap. Based on it, generic and comprehensive integrated framework and implementation procedure is developed. Besides, the study used managers, consultants and academics from various fields to validate a framework and implementation procedure for addressing business concerns. In this case, the primary data was collected through self-administered questionnaire, and 244 valid questionnaires were received and were analyzed. Furthermore, the research verified the practicability of the framework by empirically exploring the current scenario of selected manufacturing companies.

Findings

The research discovered innovative framework and six-phase implementation procedure to fill the existing conceptual gap. Furthermore, the survey-based and exploratory empirical analysis of the research demonstrated that the practice of the proposed framework based on structured procedure is valued and companies attain the middling improvements of productivity, delivery time, quality, 5S practice, waste and accident rate by 61.03, 44, 52.53, 95.19, 80.12, and 70.55% respectively. Additionally, the companies saved a total of 14933446 ETH Birr and 5,658 M2 free spaces. Even though, the practices and improvements vary from company to company, and even companies unable to practice some of the unique techniques of the identified CI initiatives considered in the proposed framework.

Research limitations/implications

All data collected in the survey came from professionals working for Ethiopian manufacturing companies, universities and government. It is important to highlight that n = 244 is high sample size, which is adequate for a preliminary survey but reinforcing still needs further survey in terms of generalization of the results since there are hundreds of manufacturing companies, consultants and academicians implementing and consulting Kaizen. Therefore, a further study on a wider Ethiopian manufacturing companies, consultants and academic scale would be informative.

Practical implications

This work is very important for Kaizen professionals in the manufacturing industry, academic and government but in particular for senior management and leadership teams. Aside from the main findings on framework development, there is some strong evidence that practice of Kaizen resulted in achieving quantitative (monetary and non-monetary) and qualitative results. Thus, senior management teams should use this research out to practice and analyze the effect of Kaizen on their own organizations. Within the academic community, this study is one of the first focusing on development, validating and practically testing and should aid further study, research and understanding of Kaizen in manufacturing industries.

Originality/value

So far, it is rare to find preceding studies proposed, validated and practically test an integrated Kaizen framework with the context of manufacturing industries. Thus, authors understand that this is the very first research focused on the development of the framework for manufacturing industries continuously to be competitive and could help managers, institutions, practitioners and academicians in Kaizen practice.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 19 May 2023

Panagiotis Tsarouhas and Niki Sidiropoulou

In a packaging olives manufacturing system, the drained weight of the product plays a decisive role in customer’s satisfaction as well as in financial saving for the organization…

Abstract

Purpose

In a packaging olives manufacturing system, the drained weight of the product plays a decisive role in customer’s satisfaction as well as in financial saving for the organization. The purpose of this study is to minimize the variation of the drained weight of olives in the production system to avoid the negative consequences.

Design/methodology/approach

The research develops a practical implementation step-by-step of Six Sigma define, measure, analyze, improve and control (DMAIC) in reducing the variation of the drained weight of olives.

Findings

Data analysis was used at various phases of the project to identify the root causes of rejection and rework. As a result of the necessary interventions and actions to optimize the manufacturing process, the standard deviation of drained weight was significantly reduced by 51.02%, with a 99.97% decrease in the number of parts per million defectives. Thus, the yield of the production process was improved by 8.24%. The estimated annual savings from this project were US$ 228,000 resulting from reduced rejection and rework.

Practical implications

This research may be used in packaging olives production systems as a tool for managers and engineers planning to increase productivity and efficiency while also improving product quality. The study also provided the organization with helpful actions that will be used to guide future Six Sigma operations management on the system. Thus, practical guidelines and solutions are provided.

Originality/value

In this project, for the first time, the Six Sigma methodology has been applied to solve a real-world problem in the packaging olives manufacturing system and to show that the DMAIC approach may assist to improve the efficiency of their operations and hence contribute to their quest toward continuous improvement.

Details

International Journal of Lean Six Sigma, vol. 15 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 19 October 2023

Mohamed Saad Bajjou and Anas Chafi

Lean construction (LC) consists of very effective techniques; however, its implementation varies considerably from one industry to another. Although numerous lean initiatives do…

Abstract

Purpose

Lean construction (LC) consists of very effective techniques; however, its implementation varies considerably from one industry to another. Although numerous lean initiatives do exist in the construction industry, the research topic related to LC implementation is still unexplored due to the scarcity of validated assessment frameworks. This study aims to provide the first attempt in developing a structural model for successful LC implementation.

Design/methodology/approach

This study developed a Lean construction model (LCM) by critically reviewing seven previous LC frameworks from different countries, defining 18 subprinciples grouped into 6 major principles and formulating testable hypotheses. The questionnaire was pre-tested with 12 construction management experts and revised by 4 specialized academics. A pilot study with 20 construction units enhanced content reliability. Data from 307 Moroccan construction companies were collected to develop a measurement model. SPSS V. 26 was used for Exploratory Factor Analysis, followed by confirmatory factor analysis using AMOS version 23. Finally, a structural equation model statistically assessed each construct's contribution to the success of LC implementation.

Findings

This work led to the development of an original LCM based on valid and reliable LC constructs, consisting of 18 measurement items grouped into 6 LC principles: Process Transparency, People involvement, Waste elimination, Planning and Continuous improvement, Client Focus and Material/information flow and pull. According to the structural model, LC implementation success is positively influenced by Planning and Scheduling/continuous improvement (β = 0.930), followed by Elimination of waste (β = 0.896). Process transparency ranks third (β = 0.858). The study demonstrates that all these factors are mutually complementary, highlighting a positive relationship between LC implementation success and the holistic application of all LC principles.

Originality/value

To the best of the authors’ knowledge, this study is the first attempt to develop a statistically proven model of LC based on structural equation modelling analysis, which is promising for stimulating construction practitioners and researchers for more empirical studies in different countries to obtain a more accurate reflection of LC implementation. Moreover, the paper proposes recommendations to help policymakers, academics and practitioners anticipate the key success drivers for more successful LC implementation.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 August 2022

Sayan Chakraborty, Charandeep Singh Bagga and S.P. Sarmah

Being the final end of the logistic distribution, attended home delivery (AHD) plays an important role in the distribution network. AHD typically refers to the service provided by…

Abstract

Purpose

Being the final end of the logistic distribution, attended home delivery (AHD) plays an important role in the distribution network. AHD typically refers to the service provided by the distribution service provider to the recipient's doorstep. Researchers have always identified AHD as a bottleneck for last-mile delivery. This paper addresses a real-life stochastic multi-objective AHD problem in the context of the Indian public distribution system (PDS).

Design/methodology/approach

Two multi-objective models are proposed. Initially, the problem is formulated in a deterministic environment, and later on, it is extended to a multi-objective AHD model with stochastic travel and response time. This stochastic AHD model is used to extensively analyze the impact of stochastic travel time and customer response time on the total expected cost and time-window violation. Due to the NP-hard nature of the problem, an ant colony optimization (ACO) algorithm, tuned via response surface methodology (RSM), is proposed to solve the problem.

Findings

Experimental results show that a change in travel time and response time does not significantly alter the service level of an AHD problem. However, it is strongly correlated with the planning horizon and an increase in the planning horizon reduces the time-window violation drastically. It is also observed that a relatively longer planning horizon has a lower expected cost per delivery associated.

Research limitations/implications

The paper does not consider the uncertainty of supply from the warehouse. Also, stochastic delivery failure probabilities and randomness in customer behavior have not been taken into consideration in this study.

Practical implications

In this paper, the role of uncertainty in an AHD problem is extensively studied through a case of the Indian PDS. The paper analyzes the role of uncertain travel time and response time over different planning horizons in an AHD system. Further, the impact of the delivery planning horizon, travel time and response time on the overall cost and service level of an AHD system is also investigated.

Social implications

This paper investigates a unique and practical AHD problem in the context of Indian PDS. In the present context of AHD, this study is highly relevant for real-world applications and can help build a more efficient delivery system. The findings of this study will be of particular interest to the policy-makers to build a more robust PDS in India.

Originality/value

The most challenging part of an AHD problem is the requirement of the presence of customers during the time of delivery, due to which the probability of failed delivery drastically increases if the delivery deviates from the customer's preferred time slot. The paper modelled an AHD system to incorporate uncertainties to attain higher overall performance and explore the role of uncertainty in travel and response time with respect to the planning horizon in an AHD, which has not been considered by any other literature.

Details

Kybernetes, vol. 52 no. 12
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of over 6000