Search results

1 – 10 of 437
Article
Publication date: 17 October 2017

Joshua Gale and Ajit Achuhan

Additive manufacturing (AM) processes involve a layer-by-layer sintering of metallic powders to produce fully functional three-dimensional parts. This layer-by-layer building…

Abstract

Purpose

Additive manufacturing (AM) processes involve a layer-by-layer sintering of metallic powders to produce fully functional three-dimensional parts. This layer-by-layer building process provides a unique opportunity to enhance mechanical properties by applying treatments that previously were possible only on the surface in traditional manufacturing techniques. The purpose of the study is to examine the effect of ultrasonic peening (UP) applied during a layer-by-layer direct metal laser sintering (DMLS) fabrication of 316L stainless steel on its mechanical properties and microstructure.

Design/methodology/approach

Uniaxial tensile tests were performed at 1.27 mm/s to determine the effect of UP treatment on the average global behavior of a 316L part, whereas hardness measurements using nanoindentation were performed to determine the modification of local mechanical properties. Compressive buckling tests at a loading rate of 3 mm/min were performed on sample coupons with a large aspect ratio to evaluate the effect of UP on any potential delamination of DMLS layers. Techniques such as optical and scanning electron microscopy (SEM) imaging were utilized to determine the effect of UP on the microstructure.

Findings

Overall, significant modification in mechanical properties such as hardness and yield strength, along with microstructure, was observed. Large increases in both the average global and local mechanical properties, as well as a disruption in the columnar grain microstructure, was observed in DMLS parts treated with UP treatment.

Originality/value

Results indicate an opportunity for UP to be used as an in-situ process during AM processes for dynamically altering the mechanical behavior, microstructure, and distortion due to residual stress formation, in a tunable fashion.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 1996

I.C. Sellars

Reviews all the stages of a protective coating process applicable to structural steelworks. Illustrates the monitoring and testing equipment currently available and the progress…

Abstract

Reviews all the stages of a protective coating process applicable to structural steelworks. Illustrates the monitoring and testing equipment currently available and the progress being made in the field of coating inspection. Lists products applicable to coating thickness measurement problems, with informed comment from the managing director of a firm with nearly 50 years' experience of supplying the coatings industry with instrumentation for the quality control of coating processes.

Details

Pigment & Resin Technology, vol. 25 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Content available
Article
Publication date: 1 August 2003

70

Abstract

Details

Microelectronics International, vol. 20 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 September 2022

Changgeng Zhang, Lan Yang and Yongjian Li

The purpose of this study is to investigate the effect of punching on the local magnetic properties of the nonoriented electrical steel sheet.

Abstract

Purpose

The purpose of this study is to investigate the effect of punching on the local magnetic properties of the nonoriented electrical steel sheet.

Design/methodology/approach

A microcomposite B–H sensor consisting of a pair of B probes with a spacing of 2 mm and a 1.8 × 1.8 mm2 H coil is designed. The region and degree of local magnetic properties degradation caused by punching can be quantitatively analyzed by flexibly moving the composite B–H sensor. The influence and physical mechanism of punching on the hysteresis loss, eddy current loss and excess loss are analyzed based on the Bertotti loss separation theory.

Findings

This study investigates the deterioration effect of the punched nonoriented electrical steel. The permeability near the edge decreases, and the core loss as well as the microhardness increases. The region of magnetic property deterioration is dependent on the area of work hardening.

Originality/value

The microcomposite B–H sensor can be used to measure the magnetic properties near the edge of electrical steel sheets under different processing conditions. This study provides the possibility of precise magnetic property model of the motor core after punching, especially valuable for motors without annealing process.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 May 2012

Ahmed Abou‐Elyazied Abdallh, Guillaume Crevecoeur and Luc Dupré

The purpose of this paper is to determine a priori the optimal needle placement so to achieve an as accurate as possible magnetic property identification of an electromagnetic…

Abstract

Purpose

The purpose of this paper is to determine a priori the optimal needle placement so to achieve an as accurate as possible magnetic property identification of an electromagnetic device. Moreover, the effect of the uncertainties in the geometrical parameter values onto the optimal sensor position is studied.

Design/methodology/approach

The optimal needle placement is determined using the stochastic Cramér‐Rao lower bound method. The results obtained using the stochastic method are compared with a first order sensitivity analysis. The inverse problem is solved starting from real local magnetic induction measurements coupled with a 3D finite element model of an electromagnetic device (EI core inductor).

Findings

The optimal experimental design for the identification of the magnetic properties of an electromagnetic device is achieved. The uncertainties in the geometrical model parameters have a high effect on the inverse problem recovered solution.

Originality/value

The solution of the inverse problem is more accurate because the measurements are carried out at the optimal positions, in which the effects of the uncertainties in the geometrical model parameters are limited.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 September 2022

Yongjian Li, Kai Zhang, Yu Dou, Zhiwei Lin, Yu Fu and Changgeng Zhang

In rotational alternating current machines, interlocking is a commonly used manufacturing method to fix laminated silicon steel cores. The purpose of this study is to measure the…

Abstract

Purpose

In rotational alternating current machines, interlocking is a commonly used manufacturing method to fix laminated silicon steel cores. The purpose of this study is to measure the localized magnetic properties more comprehensively and to analyze the deteriorated magnetic properties caused by interlocking more accurately.

Design/methodology/approach

A movable B–H sensor is designed in this paper. The localized magnetic properties measurement was performed to investigate the magnetic properties around the interlocks with various sizes, various orientations and various numbers of laminations. Then, the damaged area caused by the interlocking was quantified, and the magnetic degradation of different degrees is layered.

Findings

The measurement results have shown that the interlocks with larger sizes, along the transverse direction and on 10-layer laminate, will lead to more serious magnetic degradation, and the maximum loss increment can reach up to 70%.

Originality/value

This work is an improvement and optimization based on the previous overall magnetic measurement of the interlock. The quantitative results of the localized magnetic measurement will have a certain significance for the accurate modeling and simulation of the electrical machines and provide valuable guidance for the optimization of the actual production process of the motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 March 2009

Yung‐Tsan Jou, Hui‐Ming Wee, Hsiao‐Ching Chen, Yao‐Hung Hsieh and Laurence Wang

The purpose of this paper is to create a usable life forecast model for consumable parts using neural network approach. It focuses on a consumable probe card used in the…

Abstract

Purpose

The purpose of this paper is to create a usable life forecast model for consumable parts using neural network approach. It focuses on a consumable probe card used in the semiconductor wafer testing operation. Referring to the relevant resources and the semiconductor testing operation, a fundamental concept is built to develop a probe card management system.

Design/methodology/approach

A neural network analysis software package, Q‐net2000, is applied in this study. In this case, there is one hidden layer and the neural network learning rates and momentum are set to 0.1 and 0.7. Forecast the usable life by inputting the initial values of the neural network variables into a back‐propagation neural network.

Findings

In this system, the first thing is to collect the production, maintenance and repair data, and then analyze those data by using a neural network methodology to effectively forecast a probe card's usable life. Those data are integrated to derive an optimum timing of placing a probe card order using an inventory control technique. Finally, the actual production data of a company are used to verify the feasibility of this research.

Research limitations/implications

The results presented are based on a representative expendable probe card manufacturing process in the Taiwan industry, a range of alternative scenarios and changes to the process design can be investigated using the simulation model.

Practical implications

For the semiconductor industry, the research supports the introduction on lifecycle forecast technology for expendable probe card manufacturing process.

Originality/value

The paper proposes a neural network forecast analysis to solve the case company's current management problem of determining the life cycle of probe cards in an earlier time.

Details

Journal of Manufacturing Technology Management, vol. 20 no. 3
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 15 November 2011

Markus Neumayer, Daniel Watzenig and Bernhard Brandstätter

The purpose of this paper is to demonstrate an inverse problem approach for the determination of stress zones in steel plates of electrical machines. Steel plates of electrical…

Abstract

Purpose

The purpose of this paper is to demonstrate an inverse problem approach for the determination of stress zones in steel plates of electrical machines. Steel plates of electrical machines suffer large mechanical stress by processes like cutting or punching during the fabrication. The mechanical stress has effects on the electrical properties of the steel, and thus on the losses of the machine.

Design/methodology/approach

In this paper, the authors present a sensor arrangement and an appropriate algorithm for determining the spatial permeability distribution in steel plates. The forward problem for stress zone imaging is explained and an appropriate numerical solution technique is proposed. Then an inverse problem formulation is introduced and the nature of the problem is analyzed.

Findings

Based on sensitivity analysis, different measurement procedures are compared and a measurement setup is suggested. Further the ill‐posed nature of the inverse problem is analyzed by the Picard condition.

Practical implications

Because of the increased losses due to stress zones, the quantification of stress effects is of interest to adjust the production process. Stress zone imaging is a first approach for the application of an imaging system to quantify these material defects.

Originality/value

This paper presents a simulation study about the applicability of an inverse problem for stress zone imaging and presents first reconstruction results. Further, the paper discusses several issues about stress zone imaging for the ongoing research.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 April 2007

Kui Chen, Marco Leona and Tuan Vo‐Dinh

Identification and characterization of organic pigments and dyes used in works of art and cultural heritage material such as prints, drawings, manuscripts, paintings, and textiles…

2230

Abstract

Purpose

Identification and characterization of organic pigments and dyes used in works of art and cultural heritage material such as prints, drawings, manuscripts, paintings, and textiles can provide important information for dating, authentication, and conservation treatment of these objects and studying art history in general. Applications of surface‐enhanced Raman scattering (SERS) for this purpose have recently attracted increasing attention of both academic scientists and museum researchers. This paper aims to review the latest development involving the emerging applications of SERS for the analysis of organic pigments and dyes used in works of art and cultural heritage material.

Design/methodology/approach

First, the importance of organic pigments and dyes in the studies of works of art and cultural heritage material and the challenges in their identification and characterization are briefly summarized. This is followed by a discussion on sampling considerations in the context of art and archaeology. Then the fundamental principle of SERS, SERS instrumentation and different types of SERS substrates are reviewed. Finally, selected examples of SERS applications to the identification of organic pigments and dyes, including the analysis of a couple of samples of artistic and archaeological interest, are presented and discussed.

Findings

The last few years have witnessed the emergence of SERS as a non‐destructive or micro‐destructive technique for the characterization of organic pigments and dyes found in artistic and archaeological objects. Spectroscopic and microscopic measurements using SERS have provided some novel information and answers to a wide variety of questions. However, SERS application to the field of art and archaeology is still in the fledging stage of development and requires closer collaboration between academic scientists and museum researchers. But the range of possible applications is broad. Future trends point to a strong need for the development of portable instruments for field applications.

Originality/value

By compiling this review, the authors hope to direct more attention toward SERS and bring together the expertise in the scientific, museum and art community to further explore the possibilities of SERS in rapid and direct identification of pigments and dyes under field conditions.

Details

Sensor Review, vol. 27 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 May 1959

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Reports and Technical Memoranda of the United States…

Abstract

Under this heading are published regularly abstracts of all Reports and Memoranda of the Aeronautical Research Council, Reports and Technical Memoranda of the United States National Advisory Committee for Aeronautics and publications of other similar Research Bodies as issued.

Details

Aircraft Engineering and Aerospace Technology, vol. 31 no. 5
Type: Research Article
ISSN: 0002-2667

1 – 10 of 437