Search results

1 – 10 of 50
Article
Publication date: 7 March 2023

Muthuram N. and Saravanan S.

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Abstract

Purpose

This paper aims to improve the life of the printed circuit boards (PCB) used in computers based on modal analysis by increasing the natural frequency of the PCB assembly.

Design/methodology/approach

In this work, through experiments and numerical simulations, an attempt has been made to increase the fundamental natural frequency of the PCB assembly as high as practically achievable so as to minimize the impacts of dynamic loads acting on it. An optimization tool in the finite element software (ANSYS) was used to search the specified design space for the optimal support location of the six fastening screws.

Findings

It is observed that by changing the support locations based on the optimization results the fundamental natural frequency can be raised up to 51.1% and the same is validated experimentally.

Research limitations/implications

Manufacturers of PCBs used in computers fix the support locations based on symmetric feature of the board not on the dynamic behavior of the assembly. This work might lead manufacturers to redesign the location of other surface mount components.

Practical implications

This work provides guidelines for PCB manufacturers to finalize their support locating points which will improve the dynamic characteristics of the PCB assembly during its functioning.

Originality/value

This study provides a novel method to improve the life of PCB based on support locations optimization which includes majority of the surface mount components that contributes to the total mass the PCB assembly.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 22 September 2023

Mohamad Solehin Mohamed Sunar, Maria Abu Bakar, Atiqah A., Azman Jalar, Muhamed Abdul Fatah Muhamed Mukhtar and Fakhrozi Che Ani

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Abstract

Purpose

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Design/methodology/approach

The fine-pitch stencil used in this work is fabricated by electroform process and subsequently nano-coated using the PVD process. Stencil printing process was then performed to print the solder paste onto the printed circuit board (PCB) pad. The solder paste release was observed by solder paste inspection (SPI) and analyzed qualitatively and quantitatively. The printing cycle of up to 80,000 cycles was used to investigate the life span of stencil printing.

Findings

The finding shows that the performance of stencil printing in terms of solder printing quality is highly dependent on the surface roughness of the stencil aperture. PVD-coated stencil aperture can prolong the life span of stencil printing with an acceptable performance rate of about 60%.

Originality/value

Stencil printing is one of the important processes in surface mount technology to apply solder paste on the PCB. The stencil’s life span greatly depends on the type of solder paste, stencil printing cycles involved and stencil conditions such as the shape of the aperture, size and thickness of the stencil. This study will provide valuable insight into the relationship between the coated stencil wall aperture via PVD process on the life span of fine-pitch stencil printing.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 21 July 2022

Fatima Iftikhar, Suleman Anis, Umar Bin Asad, Shagufta Riaz, Muntaha Rafiq and Salman Naeem

Carpal tunnel syndrome (CTS) is a hand disease caused by the pressing of the median nerve present in the palmar side of the wrist. It causes severe pain in the wrist, triggering…

Abstract

Purpose

Carpal tunnel syndrome (CTS) is a hand disease caused by the pressing of the median nerve present in the palmar side of the wrist. It causes severe pain in the wrist, triggering disturbance during sleep. Different products like splints, braces and gloves are available in the market to alleviate this disease but there was still a need to improve the wearability, comfort and cost of the product. This study was about designing a comfortable and cost-effective wearable system for mild-to-moderate CTS. Transcutaneous electrical nerve stimulation (TENS) therapy has been used to reduce the pain in the wrist.

Design/methodology/approach

After simulation by using Proteus software (which allowed the researchers to draw and simulate electrical circuits using ISIS, ARES and PCB design tools virtually), the circuit with optimum frequency, i.e. 33 Hz was selected, and the circuit was developed on a printed circuit board (PCB). The developed circuit was integrated successfully into the half glove structure.

Findings

The developed product had good thermophysiological comfort and hand properties as compared to the commercially available product of the same kind. In vivo testing (It involves the testing with living subjects like animals, plants or human beings) was performed which resulted in 85% confirmed viability of the product against CTS. A glove with an integrated circuit was developed successfully to accommodate various sizes without any sex specifications in a cost-effective way to mitigate the issue of CTS.

Research limitations/implications

Industrial workers, individuals frequently using their hands or those diagnosed with CTS may wish to use this product as therapy. The attention could not be paid to the aesthetic or visual appeal of the developed product.

Originality/value

A very comfortable glove with integrated TENS electrodes was developed successfully to accommodate various sizes without any sex specifications in a cost-effective way to mitigate the issues of CTS.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 18 March 2024

Min Zeng, Jianxing Xie, Zhitao Li, Qincheng Wei and Hui Yang

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter…

Abstract

Purpose

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter (EKF) to estimate the temperature of the thermocouple.

Design/methodology/approach

Temperature optimal control is combined with a closed-loop proportional integral differential (PID) control method based on an EKF. Different control methods for measuring the temperature of the thermode in terms of temperature control, error and antidisturbance are studied. A soldering process in a semi-industrial environment is performed. The proposed control method was applied to the soldering of flexible printed circuits and circuit boards. An infrared camera was used to measure the top-surface temperature.

Findings

The proposed method can not only estimate the soldering temperature but also eliminate the noise of the system. The performance of this methodology was exemplary, characterized by rapid convergence and negligible error margins. Compared with the conventional control, the temperature variability of the proposed control is significantly attenuated.

Originality/value

An EKF was designed to estimate the temperature of the thermocouple during hot-bar soldering. Using the EKF and PID controller, the nonlinear properties of the system could be effectively overcome and the effects of disturbances and system noise could be decreased. The proposed method significantly enhanced the temperature control performance of hot-bar soldering, effectively suppressing overshoot and shortening the adjustment time, thereby achieving precise temperature control of the controlled object.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 14 February 2024

Lu Luo, Kang Qi and Hualiang Huang

The purpose of this paper is to investigate the effects of chloride ion concentration and applied bias voltage on the electrochemical migration (ECM) behavior between Cu and Ag…

Abstract

Purpose

The purpose of this paper is to investigate the effects of chloride ion concentration and applied bias voltage on the electrochemical migration (ECM) behavior between Cu and Ag under an NaCl thin electrolyte layer (TEL).

Design/methodology/approach

A self-made experimental setup for the ECM behavior between Cu and Ag was designed. An HD video measurement microscopy was used to observe the typical dendrite/corrosion morphology and pH distribution. Short-circuit time (SCT), short-circuit current density and the influence of the galvanic effect between Cu and Ag on their ECM behavior were studied by electrochemical tests. The surface morphology and composition of dendrite were characterized by FESEM/EDS.

Findings

The SCT increased with increasing NaCl concentration but decreased with increasing applied bias voltage, and the SCT between Cu and Ag was less than that between Cu and Cu because their galvanic effect accelerated the dissolution and migration of Cu. When NaCl concentration was less than or equal to 6 mmol/L, cedar-like dendrite was formed, whereas no dendrite formed and only precipitation occurred at high chloride ion concentration (100 mmol/L). The composition of the dendrite between Cu and Ag was copper.

Research limitations/implications

The significance of this study is to clarify the ECM failure mechanism of printed circuit board (PCB) with an immersion silver surface finish (PCB-ImAg).

Practical implications

This study provides a basic theoretical basis for the selection of protective measures and metal coatings for PCB.

Social implications

The social implication of this study is to predict the service life of PCB.

Originality/value

The ECM behavior of dissimilar metals under a TEL was investigated, the influence of the galvanic effect between them on their ECM was discussed, and the SCT increased with increasing NaCl concentration.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 April 2024

Jinwei Zhao, Shuolei Feng, Xiaodong Cao and Haopei Zheng

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and…

Abstract

Purpose

This paper aims to concentrate on recent innovations in flexible wearable sensor technology tailored for monitoring vital signals within the contexts of wearable sensors and systems developed specifically for monitoring health and fitness metrics.

Design/methodology/approach

In recent decades, wearable sensors for monitoring vital signals in sports and health have advanced greatly. Vital signals include electrocardiogram, electroencephalogram, electromyography, inertial data, body motions, cardiac rate and bodily fluids like blood and sweating, making them a good choice for sensing devices.

Findings

This report reviewed reputable journal articles on wearable sensors for vital signal monitoring, focusing on multimode and integrated multi-dimensional capabilities like structure, accuracy and nature of the devices, which may offer a more versatile and comprehensive solution.

Originality/value

The paper provides essential information on the present obstacles and challenges in this domain and provide a glimpse into the future directions of wearable sensors for the detection of these crucial signals. Importantly, it is evident that the integration of modern fabricating techniques, stretchable electronic devices, the Internet of Things and the application of artificial intelligence algorithms has significantly improved the capacity to efficiently monitor and leverage these signals for human health monitoring, including disease prediction.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 April 2024

Amer Mecellem, Soufyane Belhenini, Douaa Khelladi and Caroline Richard

The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic…

Abstract

Purpose

The purpose of this study is to propose a simplifying approach for modelling a reliability test. Modelling the reliability tests of printed circuit board (PCB)/microelectronic component assemblies requires the adoption of several simplifying assumptions. This study introduces and validates simplified assumptions for modeling a four-point bend test on a PCB/wafer-level chip scale packaging assembly.

Design/methodology/approach

In this study, simplifying assumptions were used. These involved substituting dynamic imposed displacement loading with an equivalent static loading, replacing the spherical shape of the interconnections with simplified shapes (cylindrical and cubic) and transitioning from a three-dimensional modelling approach to an equivalent two-dimensional model. The validity of these simplifications was confirmed through both quantitative and qualitative comparisons of the numerical results obtained. The maximum principal plastic strain in the solder balls and copper pads served as the criteria for comparison.

Findings

The simplified hypotheses were validated through quantitative and qualitative comparisons of the results from various models. Consequently, it was determined that the replacement of dynamic loading with equivalent static loading had no significant impact on the results. Similarly, substituting the spherical shape of interconnections with an equivalent shape and transitioning from a three-dimensional approach to a two-dimensional one did not substantially affect the precision of the obtained results.

Originality/value

This study serves as a valuable resource for researchers seeking to model accelerated reliability tests, particularly in the context of four-point bending tests. The results obtained in this study will assist other researchers in streamlining their numerical models, thereby reducing calculation costs through the utilization of the simplified hypotheses introduced and validated herein.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 2 February 2023

Shanmugan Subramani and Mutharasu Devarajan

Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested…

Abstract

Purpose

Polymer-based thermal interface materials (TIMs) are having pump out problem and could be resolved for reliable application. Solid-based interface materials have been suggested and reported. The purpose of this paper is suggesting thin film-based TIM to sustain the light-emiting diode (LED) performance and electronic device miniaturization.

Design/methodology/approach

Consequently, ZnO thin film at various thicknesses was prepared by chemical vapour deposition (CVD) method and tested their thermal behaviour using thermal transient analysis as solid TIM for high-power LED.

Findings

Low value in total thermal resistance (Rth-tot) was observed for ZnO thin film boundary condition than bare Al boundary condition. The measured interface (ZnO thin film) resistance {(Rth-bhs) thermal resistance of the interface layer (thin film) placed between metal core printed circuit board (MCPCB) board and Al substrates} was nearly equal to Ag paste boundary condition and showed low values for ZnO film prepared at 30 min process time measured at 700 mA. The TJ value of LED mounted on ZnO thin film (prepared at 30 min.) coated Al substrates was measured to be 74.8°C. High value in junction temperature difference (ΔTJ) of about 4.7°C was noticed with 30 min processed ZnO thin film when compared with Al boundary condition. Low correlated colour temperature and high luminous flux values of tested LED were also observed with ZnO thin film boundary condition (processed at 30 min) compared with both Al substrate and Ag paste boundary condition.

Originality/value

Overall, 30 min CVD processed ZnO thin film would be an alternative for commercial TIM to achieve efficient thermal management. This will increase the life span of the LED as the proposed material decreases the TJ values.

Details

Microelectronics International, vol. 41 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 17 April 2024

Bingyi Li, Songtao Qu and Gong Zhang

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide…

Abstract

Purpose

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide theoretical support for the industrial SMT application of Sn-Zn solder.

Design/methodology/approach

This study evaluates the properties of solder pastes and selects a more appropriate reflow parameter by comparing the microstructure of solder joints with different reflow soldering profile parameters. The aim is to provide an economical and reliable process for SMT production in the industry.

Findings

Solder paste wettability and solder ball testing in a nitrogen environment with an oxygen content of 3,000 ppm meet the requirements of industrial production. The printing performance of the solder paste is good and can achieve a printing rate of 100–160 mm/s. When soldering with a traditional stepped reflow soldering profile, air bubbles are generated on the surface of the solder joint, and there are many voids and defects in the solder joint. A linear reflow soldering profile reduces the residence time below the melting point of the solder paste (approximately 110 s). This reduces the time the zinc is oxidized, reducing solder joint defects. The joint strength of tin-zinc joints soldered with the optimized reflow parameters is close to that of Sn-58Bi and SAC305, with high joint strength.

Originality/value

This study attempts to industrialize the application of Sn-Zn solder and solves the problem that Sn-Zn solder paste is prone to be oxidized in the application and obtains the SMT process parameters suitable for Sn-9Zn-2.5Bi-1.5In solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 March 2024

Li Liu, Chunhua Zhang, Ping Hu, Sheng Liu and Zhiwen Chen

This paper aims to investigate the moisture diffusion behavior in a system-in-package module systematically by moisture-thermalmechanical-coupled finite element modeling with…

Abstract

Purpose

This paper aims to investigate the moisture diffusion behavior in a system-in-package module systematically by moisture-thermalmechanical-coupled finite element modeling with different structure parameters under increasingly harsh environment.

Design/methodology/approach

A finite element model for a system-in-package module was built with moisture-thermal-mechanical-coupled effects to study the subsequences of hygrothermal conditions.

Findings

It was found in this paper that the moisture diffusion path was mainly dominated by hygrothermal conditions, though structure parameters can affect the moisture distribution. At lower temperatures (30°C~85°C), the direction of moisture diffusion was from the periphery to the center of the module, which was commonly found in simulations and literatures. However, at relatively higher temperatures (125°C~220°C), the diffusion was from printed circuit board (PCB) to EMC due to the concentration gradient from PCB to EMC across the EMC/PCB interface. It was also found that there exists a critical thickness for EMC and PCB during the moisture diffusion. When the thickness of EMC or PCB increased to a certain value, the diffusion of moisture reached a stable state, and the concentration on the die surface in the packaging module hardly changed. A quantified correlation between the moisture diffusion coefficient and the critical thickness was then proposed for structure parameter optimization in the design of system-in-package module.

Originality/value

The different moisture diffusion behaviors at low and high temperatures have seldom been reported before. This work can facilitate the understanding of moisture diffusion within a package and offer some methods about minimizing its effect by design optimization.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 50