Search results

1 – 10 of 139
To view the access options for this content please click here
Article
Publication date: 1 October 2018

Jiawei Wang, Jinliang Liu, Guanhua Zhang and Yanmin Jia

The calculation of the shear capacity of inclined section for prestressed reinforced concrete beams is an important topic in the design of concrete members. The purpose of…

Abstract

Purpose

The calculation of the shear capacity of inclined section for prestressed reinforced concrete beams is an important topic in the design of concrete members. The purpose of this paper, based on the truss-arch model, is to analyze the shear mechanism in prestressed reinforced concrete beams and establish the calculation formula for shear capacity.

Design/methodology/approach

Considering the effect of the prestressed reinforcement axial force on the angle of the diagonal struts and regression coefficient of softening cocalculation of shear capacity is established. According to the shape of the cracks of prestressed reinforced concrete beams under shear compression failure, the tie-arch model for the calculation of shear capacity is established. Shear-failure-test beam results are collected to verify the established formula for shear bearing capacity.

Findings

Through theoretical analysis and experimental beam verification, it is confirmed in this study that the truss-arch model can be used to analyze the shear mechanism of prestressed reinforced concrete members accurately. The calculation formula for the angle of the diagonal struts chosen by considering the effect of prestress is accurate. The relationship between the softening coefficient of concrete and strength of concrete that is established is correct. Considering the effect of the destruction of beam shear plasticity of the concrete on the surface crack shape, the tie-arch model, which is established where the arch axis is parabolic, is applicable.

Originality/value

The formula for shear capacity of prestressed reinforced concrete beams based on this theoretical model can guarantee the effectiveness of the calculation results when the structural properties vary significantly. Engineers can calculate the parameters of prestressed reinforced concrete beams by using the shear capacity calculation formula proposed in this paper.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

To view the access options for this content please click here
Article
Publication date: 1 May 2003

H.Y. Leung, R.V. Balendran, T. Maqsood, A. Nadeem, T.M. Rana and W.C. Tang

Fibre reinforced polymer (FRP) materials are currently used for concrete structures in areas where corrosion problems are serious. Recent applications of FRP rebars in…

Downloads
1875

Abstract

Fibre reinforced polymer (FRP) materials are currently used for concrete structures in areas where corrosion problems are serious. Recent applications of FRP rebars in normal reinforced concrete structures in fact cannot fully utilise the strength of FRP. A more rational use of FRP would be in the area of prestressed concrete (PC) structures. In spite of the superb strength provision of FRP tendons over steel tendons, use of FRP PC members is often questioned by practising design engineers. This is largely due to the brittleness of FRP tendons and lack of ductility in FRP RC structures. Recent research has demonstrated some important findings in promoting the confidence of adopting FRP RC beams. This paper reviews some recent work on the use of FRP in PC structures. Future possible research areas are also highlighted.

Details

Structural Survey, vol. 21 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

To view the access options for this content please click here
Article
Publication date: 1 October 2018

Jiawei Wang, Yanmin Jia, Guanhua Zhang, Jigang Han and Jinliang Liu

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer…

Abstract

Purpose

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates to existing bridges. Hence, the actual capacity for strengthening existing bridges with prestressed CFRP plates is becoming an important concern for researchers. The paper aims to discuss these issues.

Design/methodology/approach

Static load tests of in-service prestressed concrete hollow slabs before and after strengthening are conducted. Based on the results of the tests, the failure characteristics, failure mechanism and bending performance of the slabs are compared and analyzed. Nonlinear finite element method is also used to calculate the flexural strength of the strengthened beams prestressed with CFRP plates.

Findings

Test results show that prestressed CFRP plate strengthening technology changes the failure mode of hollow slabs, delays the development of deflection and cracks, raises cracking and ultimate load-carrying capacity and remarkably improves mechanical behavior of the slab. In addition, the nonlinear finite element analyses are in good agreement with the test results.

Originality/value

Strengthening with prestressed CFRP plates has greater advantages compared to traditional CFRP plate strengthening technology and improves active material utilization. The presented finite element method can be applied in the flexural response calculations of strengthened beams prestressed with CFRP plates. The research results provide technical basis for maintenance and reinforcement design of existing bridges.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

To view the access options for this content please click here
Article
Publication date: 1 July 2005

Pavao Marović, Željana Nikolić and Mirela Galić

To provide an insight in one relatively simple and efficient numerical model for analysing reinforced and prestressed concrete structures, and to raise a discussion…

Abstract

Purpose

To provide an insight in one relatively simple and efficient numerical model for analysing reinforced and prestressed concrete structures, and to raise a discussion leading to the creation of one universal and robust 3D algorithm.

Design/methodology/approach

A new numerical model for analysing reinforced and prestressed concrete structures is developed and main theoretical details are described to aid the understandings. The approach is clear, easily readable and the body of the text is divided into logical sections starting from theoretical explanations ending in the large number of different practical examples.

Findings

Provides information about developing new and relatively simple numerical model for analysing reinforced and prestressed concrete structures, indicating what can be improved. Recognises the lack of knowing real behaviour of 3D concrete and starts a discussion on it.

Research limitations/implications

The knowledge of the 2D and especially 3D concrete behaviour is still poor and the concrete model developers use many simplifications. So, many new experiments should be performed and better numerical models should be developed. There is large area for researchers but having in mind that experiments are very expensive.

Practical implications

Obtained results of the 3D analysis of reinforced and prestressed concrete structures can stand as a benchmark for future researches in this field especially to the young researchers and concrete model developers.

Originality/value

This paper presents new and very simple numerical model for analysing reinforced and prestressed concrete structures. Paper could be very valuable to the researchers in this field as a benchmark for their analyses.

Details

Engineering Computations, vol. 22 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 17 June 2021

Kexin Zhang, Qi Tianyu, Li Dachao, Xue Xingwei, Fayue Wu and Xinfeng Liu

In order to understand the status of the bridge reinforcement process, the construction process monitoring of the reinforced bridge is carried out. The T-beam bridge was…

Abstract

Purpose

In order to understand the status of the bridge reinforcement process, the construction process monitoring of the reinforced bridge is carried out. The T-beam bridge was tested using the truck loading test. The displacements and concrete strains of the bridge at mid-span were measured during the test.

Design/methodology/approach

This paper describes an innovative technique, external prestressing, used to strengthen a 36-year-old prestressed T-beam bridge. This paper introduces the construction process of the prestressed reinforcement method, and makes a theoretical analysis of the reinforced bridge through the establishment of the reinforcement model.

Findings

This study showed that the structural capacity and performance of the bridge were enhanced with externally prestressed steel strand strengthening.

Originality/value

The innovative reinforcement method of prestressed T-shaped bridge is put forward, which has guiding significance for similar bridge reinforcement and maintenance.

Details

International Journal of Structural Integrity, vol. 12 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

To view the access options for this content please click here
Article
Publication date: 13 May 2020

Jinlong Lai, Jinliang Liu, Jianyong An, Hang Jia and Jia Ma

Timoshenko deformation calculation theory is suited to open section beam, which is not suited to closed section beam due to the difference stress distribution between the…

Abstract

Purpose

Timoshenko deformation calculation theory is suited to open section beam, which is not suited to closed section beam due to the difference stress distribution between the open and the closed section beam. This study aims to modify the deflection formula for prestressed concrete hollow slab (closed section beam) based on the Timoshenko theory.

Design/methodology/approach

(1) The deflection curves of the prestressed concrete hollow slab beam were obtained under a single point force; (2) linear phases of the deflection values, which were calculated by Timoshenko theory and ABAQUS, were compared with the measured values; (3) a modified coefficient related to the loading location was obtained to modify the Timoshenko theoretical formula in calculating the deflection of the prestressed concrete hollow slab.

Findings

(1) There is a large difference between the calculated values and the measured values at 4.3 < a/H < 7.7, and the differences are between 24 and 33 percent; (2) the Timoshenko deflection formula has been modified to fit for the calculation of the prestressed concrete hollow slab. The mean of f/ft is 1.01, and the variation coefficient is 0.09 after modification. Therefore, the modified formula can be better applied in the deflection calculation of the prestressed concrete hollow slab.

Originality/value

The Timoshenko theory is the most classical theory, which is often used to calculate the deformation of beams. The modified deflection formula for prestressed concrete hollow slab based on the Timoshenko theory is reliable and convenient, which can help engineers to calculate the deflection for closed section beam quickly.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

To view the access options for this content please click here
Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

Downloads
5286

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 11 October 2011

Mirela Galic, Pavao Marovic and Zeljana Nikolic

The main aim of this paper is to present a three‐dimensional numerical material model for concrete which combines plasticity with a classical orthotropic smeared crack…

Downloads
1066

Abstract

Purpose

The main aim of this paper is to present a three‐dimensional numerical material model for concrete which combines plasticity with a classical orthotropic smeared crack formulation. A further aim is to raise a discussion leading to the creation of a comprehensive computer programme for the analyses of reinforced and prestressed concrete structures.

Design/methodology/approach

A new numerical material model for concrete is developed and main theoretical explanations are given to aid in understanding the algorithm. The model is based on Mohr‐Coulomb criterion for dominant compression and Rankine criterion for dominant tension influences. A multi‐surface presentation of the model is implemented which permits the rapid convergence of the mathematical procedure. The model includes associated and non‐associated flow rules, strain hardening and softening where the development of the plastic strain was described by the function of cohesion.

Findings

Provides information about developing a new numerical material model for concrete.

Practical implications

The model is implemented into the computer programme PRECON3D for the three‐dimensional nonlinear analysis of the reinforced and prestressed concrete structures.

Originality/value

In this model, the very complex behaviour of concrete is defined by elementary material parameters which can be obtained by a standard uniaxial test. The presented model enables a very detailed and precise analysis of reinforced and prestressed concrete structures until crushing with a high accuracy, so that the expensive experimental tests can be reduced. The paper could be very valuable to researchers in this field as a benchmark for their analyses.

Details

Engineering Computations, vol. 28 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

To view the access options for this content please click here
Article
Publication date: 16 June 2020

Jiawei Wang, Jinliang Liu, Guanhua Zhang and Jigang Han

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate…

Abstract

Purpose

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate was adopted to shear strengthen a 16 m prestressed concrete hollow slab, which had serviced 20 years in cold regions. The shear properties of shear strengthen beams are analyzed.

Design/methodology/approach

Shear loading test of the shear strengthened beam and the contrast beam was conducted. Then the mechanical characteristics, failure mechanism, the mechanical response and shear capacity of shear strengthened beam and contrast beam had been discussed.

Findings

The failure mode of shear strengthened beam and contrast beam was shear compression failure, and the bond failure between concrete and prestressed reinforcement happened in both of test beams. The shear strengthening method of pasting steel plate can effectively improve the mechanical response for the shear strengthened beam. Compared with the contrast beam, the cracking load and failure shear capacity for the shear strengthened beam can be effectively increased by 12.2 and 27.6%, respectively.

Originality/value

The research results can be a reference for the detection and evaluation of shear strengthened bridges, which are strengthened by pasting steel plate. Engineers can refer to the shear strengthening method in this paper to strengthen the existing bridge, which can guarantee the safety of shear strengthened bridges.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

To view the access options for this content please click here
Article
Publication date: 6 December 2018

Jinliang Liu, Yanmin Jia, Guanhua Zhang and Jiawei Wang

The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the…

Abstract

Purpose

The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the bond-slip theory to calculate the crack width in PC beams.

Design/methodology/approach

Stress calculation method for common reinforcement after beam crack has occurred depends on the difference in the bonding performance between prestressed reinforcement and common reinforcement. A numerical calculation model for determining the crack width in PC beams is developed based on the bond-slip theory, and verified using experimental data. The calculation values obtained by the proposed numerical model and code formulas are compared, and the applicability of the numerical model is evaluated.

Findings

The theoretical analysis and experimental results verified that the crack width of PC members calculated based on the bond-slip theory in this study is reasonable. Furthermore, the stress calculation method for the common reinforcement is verified. Compared with the model calculation results obtained in this study, the results obtained from code formulas are more conservative.

Originality/value

The numerical calculation model for crack width proposed in this study can be used by engineers as a reference for calculating the crack width in PC beams to ensure the durability of the PC member.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 139