Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 10 of 29
To view the access options for this content please click here
Article
Publication date: 14 May 2020

Modification of the deflection formula for prestressed concrete hollow slab based on Timoshenko theory

Jinlong Lai, Jinliang Liu, Jianyong An, Hang Jia and Jia Ma

Timoshenko deformation calculation theory is suited to open section beam, which is not suited to closed section beam due to the difference stress distribution between the…

HTML
PDF (506 KB)

Abstract

Purpose

Timoshenko deformation calculation theory is suited to open section beam, which is not suited to closed section beam due to the difference stress distribution between the open and the closed section beam. This study aims to modify the deflection formula for prestressed concrete hollow slab (closed section beam) based on the Timoshenko theory.

Design/methodology/approach

(1) The deflection curves of the prestressed concrete hollow slab beam were obtained under a single point force; (2) linear phases of the deflection values, which were calculated by Timoshenko theory and ABAQUS, were compared with the measured values; (3) a modified coefficient related to the loading location was obtained to modify the Timoshenko theoretical formula in calculating the deflection of the prestressed concrete hollow slab.

Findings

(1) There is a large difference between the calculated values and the measured values at 4.3 < a/H < 7.7, and the differences are between 24 and 33 percent; (2) the Timoshenko deflection formula has been modified to fit for the calculation of the prestressed concrete hollow slab. The mean of f/ft is 1.01, and the variation coefficient is 0.09 after modification. Therefore, the modified formula can be better applied in the deflection calculation of the prestressed concrete hollow slab.

Originality/value

The Timoshenko theory is the most classical theory, which is often used to calculate the deformation of beams. The modified deflection formula for prestressed concrete hollow slab based on the Timoshenko theory is reliable and convenient, which can help engineers to calculate the deflection for closed section beam quickly.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-03-2020-0032
ISSN: 1757-9864

Keywords

  • Prestressed concrete hollow slab
  • Closed section beam
  • Deflection calculation
  • Modified formula
  • Timoshenko theory

To view the access options for this content please click here
Article
Publication date: 1 October 2018

Experimental study on prestressed concrete hollow slabs in service strengthened with prestressed CFRP plates

Jiawei Wang, Yanmin Jia, Guanhua Zhang, Jigang Han and Jinliang Liu

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer…

HTML
PDF (922 KB)

Abstract

Purpose

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates to existing bridges. Hence, the actual capacity for strengthening existing bridges with prestressed CFRP plates is becoming an important concern for researchers. The paper aims to discuss these issues.

Design/methodology/approach

Static load tests of in-service prestressed concrete hollow slabs before and after strengthening are conducted. Based on the results of the tests, the failure characteristics, failure mechanism and bending performance of the slabs are compared and analyzed. Nonlinear finite element method is also used to calculate the flexural strength of the strengthened beams prestressed with CFRP plates.

Findings

Test results show that prestressed CFRP plate strengthening technology changes the failure mode of hollow slabs, delays the development of deflection and cracks, raises cracking and ultimate load-carrying capacity and remarkably improves mechanical behavior of the slab. In addition, the nonlinear finite element analyses are in good agreement with the test results.

Originality/value

Strengthening with prestressed CFRP plates has greater advantages compared to traditional CFRP plate strengthening technology and improves active material utilization. The presented finite element method can be applied in the flexural response calculations of strengthened beams prestressed with CFRP plates. The research results provide technical basis for maintenance and reinforcement design of existing bridges.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-08-2017-0049
ISSN: 1757-9864

Keywords

  • Finite element analysis
  • Prestressed CFRP plate
  • Prestressed concrete hollow slab
  • Static load test
  • Strengthening

To view the access options for this content please click here
Article
Publication date: 13 August 2018

Research on destructive test of pretensioning prestressed concrete hollow slab in service

Jiawei Wang, Guanhua Zhang, Jinliang Liu and Yanmin Jia

During service period, the bridge structures will be affected by the environment and load, so the carrying capacity will decline. The purpose of this paper is to research…

HTML
PDF (617 KB)

Abstract

Purpose

During service period, the bridge structures will be affected by the environment and load, so the carrying capacity will decline. The purpose of this paper is to research on the bearing capacity of bridge structures with time.

Design/methodology/approach

Destructive test and non-linear finite element analysis are carried out by utilizing two pretensioning prestressed concrete hollow slabs in service for 20 years; using the structural test deflection value to simulate the stiffness degradation of the service bridge and the finite element calculation results verify the accuracy of the calculation.

Findings

The flexural rigidity of the main beam when the test beam is destructed is degraded to approximately 20 percent of that before the test, which agrees well with the result of finite element analysis and indicates that the method of deducing the flexural rigidity of the structure according to the measured deflection value can effectively simulate the rigidity degradation law of the bridge in service. The crack resistance property of the test beam degrades obviously and the ultimate bearing capacity of the bending resistance does not degrade obviously.

Originality/value

The research results truly reflect the destruction process, destructive form, bearing capacity and rigidity degradation law of the old beam of the concrete bridge in service for 20 years and can provide technical basis for optimization design of newly built bridges of the same type and maintenance and reinforcement design of existing old bridges.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-07-2017-0043
ISSN: 1757-9864

Keywords

  • Destructive test
  • Flexural rigidity degradation
  • Non-linear finite element analysis
  • Pretensioning prestressed concrete hollow slab
  • Ultimate bearing capacity

To view the access options for this content please click here
Article
Publication date: 17 June 2020

Experimental study on shear behavior of hollow slab beam strengthened with pasting steel plates

Jiawei Wang, Jinliang Liu, Guanhua Zhang and Jigang Han

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate…

HTML
PDF (1.3 MB)

Abstract

Purpose

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate was adopted to shear strengthen a 16 m prestressed concrete hollow slab, which had serviced 20 years in cold regions. The shear properties of shear strengthen beams are analyzed.

Design/methodology/approach

Shear loading test of the shear strengthened beam and the contrast beam was conducted. Then the mechanical characteristics, failure mechanism, the mechanical response and shear capacity of shear strengthened beam and contrast beam had been discussed.

Findings

The failure mode of shear strengthened beam and contrast beam was shear compression failure, and the bond failure between concrete and prestressed reinforcement happened in both of test beams. The shear strengthening method of pasting steel plate can effectively improve the mechanical response for the shear strengthened beam. Compared with the contrast beam, the cracking load and failure shear capacity for the shear strengthened beam can be effectively increased by 12.2 and 27.6%, respectively.

Originality/value

The research results can be a reference for the detection and evaluation of shear strengthened bridges, which are strengthened by pasting steel plate. Engineers can refer to the shear strengthening method in this paper to strengthen the existing bridge, which can guarantee the safety of shear strengthened bridges.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-04-2020-0038
ISSN: 1757-9864

Keywords

  • In-service prestressed concrete bridge
  • Shear strengthened technology
  • Pasting steel plate
  • Shear compression failure
  • Shear capacity

To view the access options for this content please click here
Article
Publication date: 12 August 2019

Analysis of loss in flexural stiffness of in-service prestressed hollow plate beam

Guanhua Zhang, Jiawei Wang, Jinliang Liu, Yanmin Jia and Jigang Han

During service, cracks are caused in prestressed concrete beams owing to overload or other non-load factors. These cracks significantly affect the safety of bridge…

HTML
PDF (579 KB)

Abstract

Purpose

During service, cracks are caused in prestressed concrete beams owing to overload or other non-load factors. These cracks significantly affect the safety of bridge structures. The purpose of this paper is to carry out a non-linear iterative calculation for a section of a prestressed concrete beam and obtain the change in stiffness after the section cracks.

Design/methodology/approach

The existing stress of prestressed reinforcement was measured by performing a boring stress release test on two pieces of an in-service 16 m prestressed concrete hollow plate. Considering the non-linear effects of materials, the calculation model of the loss in the flexural stiffness of the prestressed concrete beam was established based on the existing prestress. The accuracy of the non-linear calculation method and the results obtained for the section were verified by conducting a bending destruction test on two pieces of the 16 m prestressed concrete hollow plate in the same batch and by utilising the measured strain and displacement data on the concrete at the top edge of the midspan section under all load levels.

Findings

The flexural stiffness of the section decreases rapidly at first and then gradually, and structural rigidity is sensitive to the initial cracking of the beam. The method for calculating the loss in the flexural stiffness of the section established with the existing stress of prestressed reinforcement as a parameter is accurate and feasible. It realizes the possibility of assessing the loss in the rigidity of a prestressed concrete structure by adopting the existing stress of prestressed reinforcement as a parameter.

Originality/value

A method for quickly determining the loss in the stiffness of structures using existing prestress is established. By employing this method, engineers can rapidly determine whether a bridge is dangerous or not without performing a loading test. Thus, this method not only ensures the safety of human life, but also reduces the cost of testing.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-09-2018-0055
ISSN: 1757-9864

Keywords

  • Bending test
  • Bridge engineering
  • Existing prestress
  • Non-linear iteration

To view the access options for this content please click here
Article
Publication date: 1 October 2018

Method for computing the shear capacity of prestressed reinforced concrete beams based on truss-arch model

Jiawei Wang, Jinliang Liu, Guanhua Zhang and Yanmin Jia

The calculation of the shear capacity of inclined section for prestressed reinforced concrete beams is an important topic in the design of concrete members. The purpose of…

HTML
PDF (628 KB)

Abstract

Purpose

The calculation of the shear capacity of inclined section for prestressed reinforced concrete beams is an important topic in the design of concrete members. The purpose of this paper, based on the truss-arch model, is to analyze the shear mechanism in prestressed reinforced concrete beams and establish the calculation formula for shear capacity.

Design/methodology/approach

Considering the effect of the prestressed reinforcement axial force on the angle of the diagonal struts and regression coefficient of softening cocalculation of shear capacity is established. According to the shape of the cracks of prestressed reinforced concrete beams under shear compression failure, the tie-arch model for the calculation of shear capacity is established. Shear-failure-test beam results are collected to verify the established formula for shear bearing capacity.

Findings

Through theoretical analysis and experimental beam verification, it is confirmed in this study that the truss-arch model can be used to analyze the shear mechanism of prestressed reinforced concrete members accurately. The calculation formula for the angle of the diagonal struts chosen by considering the effect of prestress is accurate. The relationship between the softening coefficient of concrete and strength of concrete that is established is correct. Considering the effect of the destruction of beam shear plasticity of the concrete on the surface crack shape, the tie-arch model, which is established where the arch axis is parabolic, is applicable.

Originality/value

The formula for shear capacity of prestressed reinforced concrete beams based on this theoretical model can guarantee the effectiveness of the calculation results when the structural properties vary significantly. Engineers can calculate the parameters of prestressed reinforced concrete beams by using the shear capacity calculation formula proposed in this paper.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-09-2017-0052
ISSN: 1757-9864

Keywords

  • Coefficient of softening
  • Prestressed reinforced concrete beam

To view the access options for this content please click here
Article
Publication date: 9 April 2018

Calculation on the flexural stiffness of the section of PC hollow slab beam in the life cycle

Jinliang Liu, Yanmin Jia, Guanhua Zhang and Jiawei Wang

During service period, due to the overload or other non-load factors, cracks of the pre-stressed concrete beam are seriously affecting the safety of the bridge structure…

HTML
PDF (701 KB)

Abstract

Purpose

During service period, due to the overload or other non-load factors, cracks of the pre-stressed concrete beam are seriously affecting the safety of the bridge structure. The purpose of this paper is to quickly realize the bearing capacity and the loss of the section stiffness through fracture characteristics and make correct judgments.

Design/methodology/approach

Through the flexural failure test of two test beams: collecting data of fracture characteristics and section stiffness loss value. According to the fracture characteristic data, the flexural stiffness of the section is obtained by the nonlinear calculation method, and the results are verified by test data. Data regression method is used to establish the section flexural stiffness loss ratio calculation formula, nominal tensile strain at the bottom edge of the cross-section used as a variable factor, and the accuracy of this formula is verified by comparing the flexural failure test results of pre-stressed hollow plates.

Findings

The loss of the flexural stiffness of section shows the decrease trend of first-fast-then-slow and the structural stiffness is sensitive to the initial cracking of beam. The calculation formula on the loss ratio of the flexural stiffness of section established with the nominal tensile stress at the bottom edge of beam as a variable is accurate and feasible, it realizes the possibility of assessing the stiffness loss of pre-stressed concrete structure by adopting the statistic parameters on crack characteristics.

Originality/value

A method for quickly determine the stiffness loss of structures by using fracture characteristics is established, and using this method, engineers can quickly determine whether a bridge is a dangerous bridge, without loading test. So, this method not only ensures the safety of human life, but also saves money.

Details

International Journal of Structural Integrity, vol. 9 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-06-2017-0036
ISSN: 1757-9864

Keywords

  • Bridge engineering
  • Cross-section analysis
  • Flexural test
  • Fracture characteristics
  • Nominal tensile strain
  • Stiffness loss

To view the access options for this content please click here
Article
Publication date: 11 September 2017

Fire resistance of extruded hollow-core slabs

Kristian Hertz, Luisa Giuliani and Lars Schiøtt Sørensen

Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the…

HTML
PDF (2.5 MB)

Abstract

Purpose

Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of load-bearing capacity of hollow-core slabs when exposed to fire.

Design/methodology/approach

Furthermore, it compares theoretical calculation and assessment according to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs.

Findings

Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found.

Originality value

For the first time, the mechanisms responsible for loss of load-bearing capacity are identified, and test results and calculation approach are for the first time applied in accordance with each other for assessment of fire resistance of the structure.

Details

Journal of Structural Fire Engineering, vol. 8 no. 3
Type: Research Article
DOI: https://doi.org/10.1108/JSFE-07-2016-0009
ISSN: 2040-2317

Keywords

  • Extruded hollow-core slabs
  • Fire test
  • Load-bearing capacity
  • Standard fire resistance

To view the access options for this content please click here
Article
Publication date: 30 March 2020

Shear-bearing capacity analysis under static force for shear key of the reinforced concrete open-web sandwich slab applied to long-span structure

Yu hui Fan, Pan pan Liu, Bo Shen, Kejian Ma, Bang Wu, Tianhong Zheng and Fang Yang

The reinforced concrete open-web sandwich slab is composed of upper rib, lower rib, surface plate and shear key and was applied to long-span structure crossing at 18–30 m…

HTML
PDF (5.9 MB)

Abstract

Purpose

The reinforced concrete open-web sandwich slab is composed of upper rib, lower rib, surface plate and shear key and was applied to long-span structure crossing at 18–30 m. The shear-bearing capacity of shear key, having vital effects on the slab’s bearing capacity, is analysed to present its calculation formula used for the engineering application of the slab.

Design/methodology/approach

The shear-bearing capacity of shear key is analysed by the strut-and-tie model and the benchmark model established by the finite element method. Furthermore, the design formula of its shear capacity is given by the parametric analysis of FEM to adjust the result of the strut-and-tie model, using multivariate linear regression analysis of these parameters.

Findings

The calculation result of the benchmark model is compared with those of the strut-and-tie model and the standard formula, which indicates that the result of the strut-and-tie model is closer to that of the benchmark model than that of the standard formula. Moreover, the parametric analysis of the finite element model indicates that the volume–stirrup ratio of the shear key and the compression strength of the concrete have lesser effect on the shear capacity compared with the longitudinal reinforcement ratio and the shear-to-span ratio of the shear key and the relative section height of the rib.

Originality/value

The shear capacity of the shear key is provided in the paper by combining the finite element method and the strut-and-tie model, which is different from the calculation of the shear key in local codes and Chinese code, based on the theory of short corbel and the experiment of member. Furthermore, the formula of the shear capacity could be employed in the design and construction of the RC open-web sandwich slab, mainly used in the public and industrial multi-story building with long span to save the dwindling land resource currently.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-11-2019-0121
ISSN: 1757-9864

Keywords

  • Strut-and-tie model
  • Shear key
  • Shear-bearing capacity
  • Parametric analysis
  • Open-web sandwich slab

To view the access options for this content please click here
Article
Publication date: 23 March 2012

Modelling the Fire Resistance of Prestressed Concrete Floors using Multi-Spring Connection Elements

Jeong-Ki Min, Rajesh Dhakal, Peter Moss, Andrew Buchanan and Anthony Abu

The fire resistance of precast prestressed concrete floor systems is heavily influenced by the end connections and the stiffness of the surrounding structure, both of…

HTML
PDF (812 KB)

Abstract

The fire resistance of precast prestressed concrete floor systems is heavily influenced by the end connections and the stiffness of the surrounding structure, both of which must be considered in any analysis. Analysing floor slabs with beam or shell elements whose end nodes share the nodes of supporting beams leads to a major problem for precast prestressed flooring systems where the steel tendons terminate at the end of the flooring units, because the approach of sharing nodes of the supporting beam and floor assumes that these tendons are anchored into the supporting beams. In order to solve this problem, a "multi-spring" connection element has been developed. Experimental data available from previous research work has been used to validate the finite element model. It is concluded that the inclusion of the multi-spring connection results in more accurate predictions of prestressed hollowcore slab behaviour in fire conditions.

Details

Journal of Structural Fire Engineering, vol. 3 no. 1
Type: Research Article
DOI: https://doi.org/10.1260/2040-2317.3.1.1
ISSN: 2040-2317

Keywords

  • Fire resistance
  • Hollowcore Slabs
  • Multi-spring connection
  • Finite element analysis

Access
Only content I have access to
Only Open Access
Year
  • Last 12 months (4)
  • All dates (29)
Content type
  • Article (26)
  • Earlycite article (3)
1 – 10 of 29
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here