Books and journals Case studies Expert Briefings Open Access
Advanced search

Search results

1 – 10 of 13
To view the access options for this content please click here
Article
Publication date: 1 October 2018

Experimental study on prestressed concrete hollow slabs in service strengthened with prestressed CFRP plates

Jiawei Wang, Yanmin Jia, Guanhua Zhang, Jigang Han and Jinliang Liu

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP…

HTML
PDF (922 KB)

Abstract

Purpose

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates to existing bridges. Hence, the actual capacity for strengthening existing bridges with prestressed CFRP plates is becoming an important concern for researchers. The paper aims to discuss these issues.

Design/methodology/approach

Static load tests of in-service prestressed concrete hollow slabs before and after strengthening are conducted. Based on the results of the tests, the failure characteristics, failure mechanism and bending performance of the slabs are compared and analyzed. Nonlinear finite element method is also used to calculate the flexural strength of the strengthened beams prestressed with CFRP plates.

Findings

Test results show that prestressed CFRP plate strengthening technology changes the failure mode of hollow slabs, delays the development of deflection and cracks, raises cracking and ultimate load-carrying capacity and remarkably improves mechanical behavior of the slab. In addition, the nonlinear finite element analyses are in good agreement with the test results.

Originality/value

Strengthening with prestressed CFRP plates has greater advantages compared to traditional CFRP plate strengthening technology and improves active material utilization. The presented finite element method can be applied in the flexural response calculations of strengthened beams prestressed with CFRP plates. The research results provide technical basis for maintenance and reinforcement design of existing bridges.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-08-2017-0049
ISSN: 1757-9864

Keywords

  • Finite element analysis
  • Prestressed CFRP plate
  • Prestressed concrete hollow slab
  • Static load test
  • Strengthening

To view the access options for this content please click here
Article
Publication date: 13 April 2015

Interfacial stresses analysis of damaged structures strengthened with bonded prestressed FRP plate having variable fiber spacing

Ismail Bensaid, Bachir Kerboua and Cheikh Abdelmajid

The purpose of this paper is to develop a new improved solution and a new model to predict both shear and normal interfacial stress in simply supported beams strengthened…

HTML
PDF (825 KB)

Abstract

Purpose

The purpose of this paper is to develop a new improved solution and a new model to predict both shear and normal interfacial stress in simply supported beams strengthened with bonded prestressed FRP laminates by taking into account the fiber volume fraction spacing that play an important role on the interfacial stresses concentration.

Design/methodology/approach

The study has been conducted by using analytical approaches for interfacial stresses in plated beams. The analysis is based on the deformation compatibility approach where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In addition, an unrealistic restriction of the same curvatures in the RC beam and FRP panel commonly used in most of the existing studies is released in the present theoretical formulation.

Findings

To verify the analytical model, the present predictions are compared first with those of (Malek et al., 1998; Smith and Teng, 2001) in the case of the absence of the prestressing force; for the second time, the present method is compared with that developed by (Al-Emrani and Kliger, 2006; Benachour et al., 2008) in the case where only the prestressing force is applied. From the presented results, it can be seen that the present solution agree closely with the other methods in the literature.

Originality/value

The paper puts in evidence a new originality approach theory, taking into account the mechanical load, and the prestressed FRP plate model having variable fiber spacing which considers a strength rigidity and resistance of the damaged structures, which is one aspect that has not been taken into account by the previous studies.

Details

International Journal of Structural Integrity, vol. 6 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-02-2014-0006
ISSN: 1757-9864

Keywords

  • FRP composites
  • Interfacial stresses
  • Prestressed FRP plate

To view the access options for this content please click here
Article
Publication date: 17 June 2020

Experimental study on shear behavior of hollow slab beam strengthened with pasting steel plates

Jiawei Wang, Jinliang Liu, Guanhua Zhang and Jigang Han

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate…

HTML
PDF (1.3 MB)

Abstract

Purpose

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate was adopted to shear strengthen a 16 m prestressed concrete hollow slab, which had serviced 20 years in cold regions. The shear properties of shear strengthen beams are analyzed.

Design/methodology/approach

Shear loading test of the shear strengthened beam and the contrast beam was conducted. Then the mechanical characteristics, failure mechanism, the mechanical response and shear capacity of shear strengthened beam and contrast beam had been discussed.

Findings

The failure mode of shear strengthened beam and contrast beam was shear compression failure, and the bond failure between concrete and prestressed reinforcement happened in both of test beams. The shear strengthening method of pasting steel plate can effectively improve the mechanical response for the shear strengthened beam. Compared with the contrast beam, the cracking load and failure shear capacity for the shear strengthened beam can be effectively increased by 12.2 and 27.6%, respectively.

Originality/value

The research results can be a reference for the detection and evaluation of shear strengthened bridges, which are strengthened by pasting steel plate. Engineers can refer to the shear strengthening method in this paper to strengthen the existing bridge, which can guarantee the safety of shear strengthened bridges.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-04-2020-0038
ISSN: 1757-9864

Keywords

  • In-service prestressed concrete bridge
  • Shear strengthened technology
  • Pasting steel plate
  • Shear compression failure
  • Shear capacity

To view the access options for this content please click here
Article
Publication date: 8 April 2019

New design for reducing interfacial stresses of reinforced structures with FRP plates

Youssouf Belabed, Bachir Kerboua and Mostapha Tarfaoui

The sustainability of the structures is not only a technical goal, but also a matter of social and environmental values. This requires the researchers to use very rigid…

HTML
PDF (1 MB)

Abstract

Purpose

The sustainability of the structures is not only a technical goal, but also a matter of social and environmental values. This requires the researchers to use very rigid, highly durable and corrosion-resistant composite structures in order to achieve the technical, environmental and social goals. The purpose of this paper is to present an original work on reducing the interfacial stresses of bonded structures with fibre-reinforced polymers (FRP) plates based on new taper design.

Design/methodology/approach

In this proposed concept, the effect of combined taper is investigated on reducing interfacial stresses, attempting to enhance the structure performance and address the debonding problem that comes with reinforcing techniques. This research is carried out by using finite element analysis, incorporating many new parameters.

Findings

As a result, a new solution is discovered that combined taper in both adhesive layer and composite laminate, which significantly reduces the interfacial stresses at the end of the FRP plate. Additionally, a parametric study is carried out in order to determine the optimal configurations of taper dimensions as well as other parameters that influence the stress concentration distribution at the edge of the adherends.

Practical implications

This new design regarding the reduction of interfacial stresses will help in increasing the lifespan of damaged structures reinforced by FRP composites, preserving thus its technical, historical and social values.

Originality/value

The paper uses straight, concave and convex fillets with inverse taper as a new design solution with new parameters including thermo-mechanical loads and pre-stressed FRP plate with multi-layer, fibre orientation and shear-lag effects.

Details

International Journal of Building Pathology and Adaptation, vol. 37 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/IJBPA-09-2018-0073
ISSN: 2398-4708

Keywords

  • Interfacial stresses
  • Taper
  • Shear stress
  • FRP composites
  • Strengthening

To view the access options for this content please click here
Article
Publication date: 12 December 2019

Finite element analysis of CFRP-externally strengthened reinforced concrete beams subjected to three-point bending

Sabiha Barour, Abdesselam Zergua, Farid Bouziadi and Waleed Abed Jasim

This paper aims to develop a non-linear finite element model predicting the response of externally strengthened beams under a three-point flexure test.

HTML
PDF (6.8 MB)

Abstract

Purpose

This paper aims to develop a non-linear finite element model predicting the response of externally strengthened beams under a three-point flexure test.

Design/methodology/approach

The ANSYS software is used for modeling. SOILD65, LINK180, SHELL181 and SOLID185 elements are used, respectively, to model concrete, steel reinforcement, polymer and steel plate support. A parametric study was carried out. The effects of compressive strength, Young’s modulus, layers number and carbon fiber-reinforced polymer thickness on beam behavior are analyzed. A comparative study between the non-linear finite element and analytical models, including the ACI 440.2 R-08 model, and experimental data is also carried out.

Findings

A comparative study of the non-linear finite element results with analytical models, including the ACI 440.2 R-08 model and experimental data for different parameters, shows that the strengthened beams possessed better resistance to cracks. In general, the finite element model’s results are in good agreement with the experimental test data.

Practical implications

This model will predict the strengthened beams behavior and can describe the beams physical conditions, yielding the results that can be interpreted in the structural study context without using a laboratory testing.

Originality/value

On the basis of the results, a good match is found between the model results and experimental data at all stages of loading the tested samples. Crack models obtained in the non-linear finite element model in the beams are also presented. The submitted finite element model can be used to predict the behavior of the reinforced concrete beam. Also, the comparative study between an analytical model proposed by of current code of ACI 440.2 R-08 and finite element analysis is investigated.

Details

World Journal of Engineering, vol. 17 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/WJE-04-2019-0121
ISSN: 1708-5284

Keywords

  • Reinforced concrete beams
  • CFRP
  • Numerical model
  • ANSYS
  • Shear
  • Flexural

To view the access options for this content please click here
Article
Publication date: 13 March 2020

Static field test on flexural behavior of reinforced concrete T-beam bridge strengthened with MPC-PSWR

Hongshuai Gao and Quansheng Sun

With the rapid development of transportation and the continuous increase of traffic volume and load level, some bridges cannot meet the use requirements, and the demand…

HTML
PDF (3.3 MB)

Abstract

Purpose

With the rapid development of transportation and the continuous increase of traffic volume and load level, some bridges cannot meet the use requirements, and the demand for bridge strengthening is growing. Furthermore, bridges are affected by factors such as structure and external environment. With the increase of service time, the deterioration of bridges is also increasing. In order to avoid the waste caused by demolition and reconstruction, it is necessary to strengthen the bridge accurately and effectively to improve the bearing capacity and durability, eliminate the hidden dangers, and ensure the normal operation of the bridge. It is of great significance to study the strengthening methods. Compared with traditional strengthening methods, the advantages of using new materials and new technology to strengthen bridges are more obvious. This paper introduces a new method for bridge active strengthening, called modified polyurethane cement with prestressed steel wire rope (MPC-PSWR).

Design/methodology/approach

Relying on the actual bridge strengthening project, five T-beams of the superstructure of the bridge are taken as the research object, and the T-beams before and after strengthening are evaluated, calculated, and analyzed by finite element simulation and field load test. By comparing the numerical simulation and load test data, the strengthening effect of modified polyurethane cement with prestressed steel wire rope on stiffness, strength, and bearing capacity is verified, which proves that the strengthening effect of MPC-PSWR is effective for strengthening.

Findings

MPC-PSWR can effectively reduce deflection, cracks, and strain, thereby significantly improving the flexural capacity of existing bridges. Under the design load, the deflection, crack width, and stress of the strengthened beams decrease in varying degrees. The overall performance of the beams strengthened by MPC-PSWR has been improved, and the flexural performance meets the requirements of the code.

Originality/value

MPC-PSWR is an innovative bridge-strengthening method. Through the analysis of its MPC-PSWR effect, the MPC-PSWR method with reference to significance for the design and construction of similar bridges is put forward.

Details

International Journal of Structural Integrity, vol. 11 no. 3
Type: Research Article
DOI: https://doi.org/10.1108/IJSI-09-2019-0089
ISSN: 1757-9864

Keywords

  • Strengthening
  • Modified polyurethane cement (MPC)
  • Static loading test

To view the access options for this content please click here
Article
Publication date: 1 October 2020

Numerical analysis of reinforced concrete beams strengthened in shear using carbon fiber reinforced polymer materials

Sabiha Barour and Abdesselam Zergua

This paper aims to analyze the performance of reinforced concrete (RC) beams strengthened in shear with carbon fiber-reinforced polymer (CFRP) sheets subjected to…

HTML
PDF (1.9 MB)

Abstract

Purpose

This paper aims to analyze the performance of reinforced concrete (RC) beams strengthened in shear with carbon fiber-reinforced polymer (CFRP) sheets subjected to four-point bending.

Design/methodology/approach

ANSYS software is used to build six models. In addition, SOILD65, LINK180, SHELL181 and SOLID185 elements are used, respectively, to model concrete, steel reinforcement, polymer and steel plate support. A comparative study between the nonlinear finite element and analytical models, including the ACI 440.2 R-08 and FIB14 models as well as experimental data, is also carried out.

Findings

The comparative study of the nonlinear finite element results with analytical models shows that the difference between the predicted load capacity ranges from 4.44%–24.49% in the case of the ACI 440.2 R-08 model, while the difference for FIB14 code ranges from 2.69%–26.03%. It is clear that there is a good agreement between the nonlinear finite element analysis (NLFEA) results and the different expected CFRP codes.

Practical implications

This model can be used to explore the behavior and predict the RC beams strengthened in shear with different CFRP properties. They could be used as a numerical platform in contrast to expensive and time-consuming experimental tests.

Originality/value

On the basis of the results, a good match is found between the model results and the experimental data at all stages of loading the tested samples. Load capacities as well as load deflection curves are also presented. It is concluded that the differences between the loads at failure ranged from 0.09%–6.16% and 0.56%–4.98%, comparing with experimental study. In addition, the increase in compressive strength produces an increase in the ultimate load capacity of the beam. The difference in the ultimate load capacity was less than 30% when compared with the American Concrete Institute and FIB14 codes.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
DOI: https://doi.org/10.1108/JEDT-03-2020-0099
ISSN: 1726-0531

Keywords

  • Reinforced concrete beams
  • CFRP
  • Numerical model
  • ANSYS
  • Shear
  • Bending

To view the access options for this content please click here
Article
Publication date: 1 March 2002

Finite element analyses of sandwich structures: a bibliography (1980–2001)

Jaroslav Mackerle

Gives a bibliographical review of the finite element analyses of sandwich structures from the theoretical as well as practical points of view. Both isotropic and composite…

HTML
PDF (204 KB)

Abstract

Gives a bibliographical review of the finite element analyses of sandwich structures from the theoretical as well as practical points of view. Both isotropic and composite materials are considered. Topics include: material and mechanical properties of sandwich structures; vibration, dynamic response and impact problems; heat transfer and thermomechanical responses; contact problems; fracture mechanics, fatigue and damage; stability problems; special finite elements developed for the analysis of sandwich structures; analysis of sandwich beams, plates, panels and shells; specific applications in various fields of engineering; other topics. The analysis of cellular solids is also included. The bibliography at the end of this paper contains 655 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1980 and 2001.

Details

Engineering Computations, vol. 19 no. 2
Type: Research Article
DOI: https://doi.org/10.1108/02644400210419067
ISSN: 0264-4401

Keywords

  • Finite element method
  • Bibliographes
  • Laminated structures

To view the access options for this content please click here
Article
Publication date: 1 May 2000

Finite element linear and nonlinear, static and dynamic analysis of structural elements – an addendum – A bibliography (1996‐1999)

Jaroslav Mackerle

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

HTML
PDF (477 KB)

Abstract

A bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view is given. The bibliography at the end of the paper contains 1,726 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1996‐1999.

Details

Engineering Computations, vol. 17 no. 3
Type: Research Article
DOI: https://doi.org/10.1108/02644400010324893
ISSN: 0264-4401

Keywords

  • Finite element analysis
  • Bibliographies
  • Analytical methods
  • Beams
  • Plates
  • Shells

To view the access options for this content please click here
Article
Publication date: 28 February 2019

Flexural behavior of fire-damaged reinforced concrete beams repaired with high-strength fiber reinforced mortar

Muhd Afiq Hizami Abdullah, Mohd Zulham Affandi Mohd Zahid, Afizah Ayob and Khairunnisa Muhamad

The purpose of this study is to investigate the effect on flexural strength of fire-damaged concrete repaired with high-strength mortar (HSM).

HTML
PDF (1.7 MB)

Abstract

Purpose

The purpose of this study is to investigate the effect on flexural strength of fire-damaged concrete repaired with high-strength mortar (HSM).

Design/methodology/approach

Reinforced concrete beams with dimension of 100 mm × 100 mm × 500 mm were used in this study. Beams were then heated to 400°C and overlaid with either HSM or high-strength fiber reinforced mortar (HSFM) to measure the effectiveness of repair material. Repaired beams of different material were then tested for flexural strength. Another group of beams was also repaired and tested by the same procedure but was heated at higher temperature of 600°C.

Findings

Repair of 400°C fire-damaged samples using HSM regained 72 per cent of its original flexural strength, 100.8 per cent of its original toughness and 56.9 per cent of its original elastic stiffness. Repair of 400°C fire-damaged samples using HSFM regained 113.5 per cent of its original flexural strength, 113 per cent of its original toughness and 85.1 per cent of its original elastic stiffness. Repair of 600°C fire-damaged samples using HSM regained 18.7 per cent of its original flexural strength, 25.9 per cent of its original peak load capacity, 26.1 per cent of its original toughness and 22 per cent of its original elastic stiffness. Repair of 600°C fire-damaged samples using HSFM regained 68.4 per cent of its original flexural strength, 96.5 per cent of its original peak load capacity, 71.2 per cent of its original toughness and 52.2 per cent of its original elastic stiffness.

Research limitations/implications

This research is limited to the size of the furnace. The beam specimen is limited to 500 mm of length and overall dimensions. This dimension is not practical in actual structure, hence it may cause exaggeration of deteriorating effect of heating on reinforced concrete beam.

Practical implications

This study may promote more investigation of using HSM as repair material for fire-damaged concrete. This will lead to real-world application and practical solution for fire-damaged structure.

Social implications

The aim of this research in using HSM mostly due to the material’s high workability which will ease its application and promote quality in repair of damaged structure.

Originality/value

There is a dearth of research on using HSM as repair material for fire-damaged concrete. Some research has been carried out using mortar but at lower strength compared to this research.

Details

Journal of Structural Fire Engineering, vol. 10 no. 1
Type: Research Article
DOI: https://doi.org/10.1108/JSFE-08-2017-0039
ISSN: 2040-2317

Keywords

  • Flexural strength
  • Repair
  • Fiber reinforced
  • Fire-damaged concrete
  • High-strength mortar

Access
Only content I have access to
Only Open Access
Year
  • Last 6 months (1)
  • Last 12 months (3)
  • All dates (13)
Content type
  • Article (11)
  • Earlycite article (2)
1 – 10 of 13
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here