Search results

1 – 10 of 394
Article
Publication date: 9 January 2017

Alexandre Silveira, Jorge M.G.P. Isidoro, Fábio P. de Deus, Simone Siqueira dos Reis, Antônio Marciano da Silva, Flávio A. Gonçalves, Paulo Henrique Bretanha Junker Menezes and Rafael de O. Tiezzi

Rainfall simulators are used on experimental hydrology, in areas such as, e.g., urban drainage and soil erosion, with important timesaving when compared to real scale hydrological…

Abstract

Purpose

Rainfall simulators are used on experimental hydrology, in areas such as, e.g., urban drainage and soil erosion, with important timesaving when compared to real scale hydrological monitoring. The purpose of this paper is to contribute to increase the quality of rainfall simulation, namely, for its use with scaled physical models.

Design/methodology/approach

Two pressurized rainfall simulators are considered. M1 uses three HH-W 1/4 FullJet nozzles under an operating pressure of 166.76 kPa and was tested over a 4.00 m length by 2.00 m width V-shaped surface. M2 was prepared to produce artificial rainfall over an area of 10.00 m length by 10.00 m width. The spatial distribution of rainfall produced from a single nozzle was characterized in order to theoretically find the best positioning for nozzles to cover the full 100 m2 area with the best possible rainfall uniformity.

Findings

Experiments with M1 led to an average rainfall intensity of 76.77-82.25 mm h−1 with a 24.88 per cent variation coefficient and a Christiansen Uniformity Coefficient (CUC) of 78.86 per cent. The best result with M2 was an average rainfall intensity of 75.12-76.83 mm h−1 with a 21.23 per cent variation coefficient and a CUC of 83.05 per cent.

Practical implications

This study contributes to increase the quality of artificial rainfall produced by pressurized rainfall simulators.

Originality/value

M2 is the largest rainfall simulator known by the authors worldwide. Its use on rainfall-runoff studies (e.g. urban areas, erosion, pollutant transport) will allow for a better understanding of complex surface hydrology processes.

Details

Management of Environmental Quality: An International Journal, vol. 28 no. 1
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 27 January 2022

Sivakumar Subramani, Sivaram Nantha Muthu and Narendra Laxman Gajbhiye

This paper aims to analyze spray characteristics of rapeseed oil as a cutting fluid in minimum quantity lubrication (MQL) through numerical simulation.

Abstract

Purpose

This paper aims to analyze spray characteristics of rapeseed oil as a cutting fluid in minimum quantity lubrication (MQL) through numerical simulation.

Design/methodology/approach

Computational fluid dynamics (CFD) is used in this numerical study. The Eulerian–Lagrangian approach was used in this simulation to project trajectories of the droplets as the cutting fluid is dispersed into a continuous phase, i.e. air. The spray characteristics of the multiphase fluids were obtained numerically using the discrete phase model (DPM).

Findings

The spray characteristics such as particle diameter and velocity were obtained for various pressure level, flow rate and nozzle diameter. The particle diameter decreased with increased pressure, whereas the velocity increased with increased pressure, flow rate and nozzle diameter. The changes in particle diameter are insignificant with respect to flow rate and nozzle diameter. DPM is an effective tool for machining processes to determine the behaviour of different cutting fluids under the MQL system.

Originality/value

In this study, the droplet and velocity distribution of vegetable oil, i.e. rapeseed oil, was investigated at the different air pressure, flow rate and nozzle diameter. This study will give insight for the manufacturer to select the better MQL system parameters to reduce the cost, time of machining processes and enhance the sustainability of the process.

Details

Industrial Lubrication and Tribology, vol. 74 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 17 August 2021

Emanuele Quaranta, Toni Pujol and Maria Carmela Grano

The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to…

1870

Abstract

Purpose

The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to preliminary estimate related benefits and costs of a VAWM repowering.

Design/methodology/approach

Two sustainable repowering solutions were examined with the additional aim to preserve the original status and aesthetics of a VAWM: the use of a vertical axis water wheel (VAWW) and a vertical axis impulse turbine. The analysis was applied to a database of 714 VAWMs in Basilicata (Italy), with known head and flow.

Findings

Expeditious equations were proposed for both solutions to determine: (1) a suitable diameter as a function of the flow rate; (2) the costs of the electromechanical equipment; (3) achievable power. The common operating hydraulic range of a VAWM (head and flow) was also identified. Reality checks on the obtained results are shown, in particular by examining two Spanish case studies and the available literature. The power generated by the impulse turbine (Turgo type) is twice that of a VAWW, but it is one order of magnitude more expensive. Therefore, the impulse turbine should be used for higher power requirements (>3 kW), or when the electricity is delivered to the grid, maximizing the long-term profit.

Originality/value

Since there is not enough evidence about the achievable performance and cost of a VAWM repowering, this work provides expeditious tools for their evaluation.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 13 no. 2
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 20 November 2020

S. Madhu and M. Balasubramanian

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish…

Abstract

Purpose

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish with high-level precision and minimization of waste. Among the various advanced machining processes, abrasive jet machining (AJM) is one of the non-traditional machining techniques used for various applications such as polishing, deburring and hole making. Hence, an overview of the investigations done on carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GRFP) composites becomes important.

Design/methodology/approach

Discussion on various approaches to AJM, the effect of process parameters on the glass fiber and carbon fiber polymeric composites are presented. Kerf characteristics, surface roughness and various nozzle design were also discussed.

Findings

It was observed that abrasive jet pressure, stand-off distance, traverse rate, abrasive size, nozzle diameter, angle of attack are the significant process parameters which affect the machining time, material removal rate, top kerf, bottom kerf and kerf angle. When the particle size is maximum, the increased kinetic energy of the particle improves the penetration depth on the CFRP surface. As the abrasive jet pressure is increased, the cutting process is enabled without severe jet deflection which in turn minimizes the waviness pattern, resulting in a decrease of the surface roughness.

Research limitations/implications

The review is limited to glass fiber and carbon fiber polymeric composites.

Practical implications

In many applications, the use of composite has gained wide acceptance. Hence, machining of the composite need for the study also has gained wide acceptance.

Social implications

The usage of composites reduces the usage of very costly materials of high density. The cost of the material also comes down.

Originality/value

This paper is a comprehensive review of machining composite with abrasive jet. The paper covers in detail about machining of only GFRP and CFRP composites with various nozzle designs, unlike many studies which has focused widely on general AJM of various materials.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 May 2015

Amirhossein Adami, Mahda Mortazavi and Mehran Nosratollahi

For complex engineering problems, multidisciplinary design optimization (MDO) techniques use some disciplines that need to be run several times in different modules. In addition…

Abstract

Purpose

For complex engineering problems, multidisciplinary design optimization (MDO) techniques use some disciplines that need to be run several times in different modules. In addition, mathematical modeling of a discipline can be improved for each module. The purpose of this paper is to show that multi-modular design optimization (MMO) improves the design performances in comparison with MDO technique for complex systems.

Design/methodology/approach

MDO framework and MMO framework are developed to optimum design of a complex system. The nonlinear equality and inequality constrains are considered. The system optimizers included Genetic Algorithm and Sequential Quadratic Programming.

Findings

As shown, fewer design variables (optimization variables) are needed at the system level for MMO. Unshared variables are optimized in the related module when shared variables are optimized at the system level. The results of this research show that MMO has lower elapsed times (14 percent) with lower F-count (16 percent).

Practical implications

The monopropellant propulsion upper-stage is selected as a case study. In this paper, the efficient model of the monopropellant propulsion system is proposed. According to the results, the proposed model has acceptable accuracy in mass model (error < 2 percent), performance estimation (error < 6 percent) and geometry estimation (error < 10 percent).

Originality/value

The monopropellant propulsion system is broken down into the three important modules including propellant tank (tank and propellant), pressurized feeding (tank and gas) and thruster (catalyst, nozzle and catalysts bed) when chemical decomposition, aerothermodynamics, mass and configuration, catalyst and structure have been considered as the disciplines. The both MMO and MDO frameworks are developed for the monopropellant propulsion system.

Details

International Journal of Intelligent Unmanned Systems, vol. 3 no. 2/3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 January 1959

In combination, an aerial missile having a body in the form of an elongated tubular duct, a diffuser in said duct, a pressurized fuel source having a fuel chamber in said body…

Abstract

In combination, an aerial missile having a body in the form of an elongated tubular duct, a diffuser in said duct, a pressurized fuel source having a fuel chamber in said body, nozzle means connected with said fuel chamber and communicating with said duct, a venturi for said nozzle means and igniter means in said duct, said igniter means including at least an upstream flameholder and a downstream flameholder, with a source of ignition in said upstream flameholder, said nozzle means being spaced upstream from said igniter means and arranged to inject fuel into an airstream passing through said venturi at the throat thereof in a direction contra to the flow of said airstream therethrough.

Details

Aircraft Engineering and Aerospace Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 6 July 2015

Nader Pourmahmoud, Masoud Rashidzadeh and Amir Hassanzadeh

The purpose of this paper is to investigate the effect of convergent nozzles on the thermal separation inside a vortex tube, using a three-dimensional (3D) computational fluid…

Abstract

Purpose

The purpose of this paper is to investigate the effect of convergent nozzles on the thermal separation inside a vortex tube, using a three-dimensional (3D) computational fluid dynamics (CFD) model as predicting tool.

Design/methodology/approach

The 3D finite volume formulation with the standard k-ε turbulence model has been used to carry out all the computations. Six different nozzles for convergence angle have been utilized β=0, 2, 4, 6, 8 and 10°. All other geometrical parameters were considered fixed at the experimental condition, i.e. main tube and chamber sizes and 294.2 K of gas temperature at inlets.

Findings

The numerical results present that there is an optimum convergence angle for obtaining the highest efficiency and β=2° is the optimal candidate under the simulations. It can be pointed that, some numerical data are validated by the available experimental results which show good agreement.

Practical implications

It is a useful and simple design of nozzle injectors to achieve the maximum cooling capacity.

Originality/value

In the work with assuming the advantages of using convergent nozzles on the energy separation and their considerable role on the creation of maximum cooling capacity of machine, the shape of nozzles was concentrated. This research believes that choosing an appropriate convergence angle is one of the important physical parameters. So far, an effective investigation toward the optimization of convergent nozzles has not been done but the importance of this subject can be regarded as an interesting research theme; so that the machine would operate in the way that the maximum cooling effect or the maximum refrigeration capacity is provided.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 May 2008

V. Giuliani, B. de Witt, M. Salluzzi, R.J. Hugo and P. Gu

Particle velocity is a critical factor that can affect the deposition quality in manufacturing processes involving the use of a laser source and a powder‐particle delivery nozzle

Abstract

Purpose

Particle velocity is a critical factor that can affect the deposition quality in manufacturing processes involving the use of a laser source and a powder‐particle delivery nozzle. The purpose of this paper is to propose a method to detect the speed and trajectory of particles during a laser deposition process.

Design/methodology/approach

A low‐power laser light sheet technique is used to illuminate particles emerging from a custom designed powder delivery nozzle. Light scattered by the particles is detected by a high‐speed camera. Image processing on the acquired images was performed using both edge detection and Hough transform algorithms.

Findings

The experimental data were analyzed and used to estimate particle velocity, trajectory and the velocity profile at the nozzle exit. The results have demonstrated that the particle trajectory remains linear between the nozzle exit and the deposition plate and that the particle velocity can be considered a constant.

Originality/value

The use of lowpower laser light sheet illumination facilitates the detection of isolated particle streaks even in high‐powder flow rate condition. Identification of particle streaks in three subsequent images ensures that particle velocity vectors are in the plane of illumination, and also offers the potential to evaluate in a single measurement both velocity and particle size based on the observed scattered characteristics. The method provides a useful simple tool to investigate particle dynamics in a rapid prototyping application as well as other research fields involving the use of powder delivery nozzles.

Details

Rapid Prototyping Journal, vol. 14 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 March 2011

Aleksander Grm, Tor‐Arne Grönland and Tomaž Rodič

The purpose of this paper is to describe the micro fluid flow analysis in a micro thruster of micro‐/nano‐ satellite propulsion system and to propose the algorithm for the fluid…

Abstract

Purpose

The purpose of this paper is to describe the micro fluid flow analysis in a micro thruster of micro‐/nano‐ satellite propulsion system and to propose the algorithm for the fluid flow simulations with the open boundary based on moving boundary method.

Design/methodology/approach

The analysis is based on a finite volume moving boundary method. Underlying mathematical model is the system of Navier‐Stokes‐Fourier partial differential equation describing compressible gas model. Propellant under the study is pure nitrogen gas. First, the static geometry velocity vector field is calculated and the information of the velocity at the outflow boundary is obtained; then, with the moving boundary method the outlet boundary is evolved. Evolution of the boundary is stopped when the continuum model ceases to hold. The criteria of the continuum model failure are based on the local Knudsen number.

Findings

The validations of the flow with respect to the Knudsen number showed that the continuum model is valid in the nozzle interior part (from the pressure value to the nozzle throat). The exterior nozzle part (diverging side) showed immediate raising of the Knudsen number above the continuum threshold (0.01). For the overall accurate computations of thruster flow, the continuum model must be coupled with molecular model (i.e. Boltzmann BGK).

Originality/value

In this paper, the authors propose a method for the computation of an open boundary flow with the application of the moving boundary method.

Details

Engineering Computations, vol. 28 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1997

Howard Smith

Reports on the MSc group design project of students at the College of Aeronautics aerospace vehicle design in 1995. The students worked on advanced short take‐off and vertical…

1293

Abstract

Reports on the MSc group design project of students at the College of Aeronautics aerospace vehicle design in 1995. The students worked on advanced short take‐off and vertical landing of a combat aircraft. Part 2 reports on powerplant installation and associated systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 69 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 394