Search results

1 – 10 of over 13000
Article
Publication date: 7 June 2019

Mojtaba Bezaatpour and Mohammad Goharkhah

With development of the modern electronic and mechanical devices, cooling requirement has become a serious challenge. Innovative heat transfer enhancement methods are generally…

Abstract

Purpose

With development of the modern electronic and mechanical devices, cooling requirement has become a serious challenge. Innovative heat transfer enhancement methods are generally accompanied by undesirable increase of pressure drop and consequently a pumping power penalty. The current study aims to present a novel and easy method to manufacture a mini heat sink using porous fins and magnetite nanofluid (Fe3O4/water) as the coolant for simultaneous heat transfer enhancement and pressure drop reduction.

Design/methodology/approach

A three-dimensional numerical study is carried out to evaluate the thermal and hydrodynamic performance of the mini heat sink at different volume fractions, porosities and Reynolds numbers, using finite volume method. The solver specifications for discretization of the domain involve the SIMPLE, second-order upwind and second order for pressure, momentum and energy, respectively.

Findings

Results show that porous fins have a favorable effect on both heat transfer and pressure drop compared to solid fins. Creation of a virtual velocity slip on the channel-fin interfaces similar to the micro scale conditions and the flow permeation into the porous fins are the main mechanisms of pressure drop reduction. On the other hand, the heat transfer enhancement is attributed to the increase of the solid-fluid contact area and the improvement of the flow mixing because of the flow permeation into the porous fins. An optimal porosity for maximum convective heat transfer enhancement is obtained as a function of Reynolds number. However, taking both pressure drop and heat transfer effects into account, the overall heat sink performance is shown to be improved at high of Reynolds numbers, volume fractions and fin porosities.

Research limitations/implications

Thermal radiation and gravity effects are ignored, and thermal equilibrium is assumed between solid and fluid phases.

Originality/value

A maximum of 32 per cent increase of convective heat transfer is achieved along with a maximum of 33 per cent reduction in the pressure drop using porous fins and ferrofluid in heat sink.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2010

Esmail M.A. Mokheimer, S. Sami and B.S. Yilbas

This paper's aim is to examine flow and heat transfer through vertical channels between parallel plates, which is of prime importance in the design of cooling systems for…

Abstract

Purpose

This paper's aim is to examine flow and heat transfer through vertical channels between parallel plates, which is of prime importance in the design of cooling systems for electronic equipment such as that of finned cold plates in general, plate‐and‐frame heat exchangers, etc.

Design/methodology/approach

Numerical and analytical solutions are presented to investigate the heat transfer enhancement and the pressure drop reduction due to buoyancy effects (for buoyancy‐aided flow) for the developing laminar mixed convection in vertical channel between parallel plates in the vicinity of the critical values of the buoyancy parameter (Gr/Re)crt that are obtained analytically. The numerical solutions are presented for a wide range of the buoyancy parameters Gr/Re that cover both of buoyancy‐opposed and buoyancy‐aided flow situations under each of the isothermal boundary conditions under investigation.

Findings

Buoyancy parameters greater than the critical values result in building‐up the pressure downstream of the entrance such that the vertical channel might act as a thermal diffuser with possible incipient flow reversal. Locations at which the pressure gradient vanishes and the locations at which the pressure‐buildup starts have been numerically obtained and presented for all the investigated cases.

Research limitations/implications

The study is limited to the laminar flow situation.

Practical implications

The results clearly show that for buoyancy‐aided flow, the increase of the buoyancy parameter enhances the heat transfer and reduces the pressure drop across the vertical channel. These findings are very useful for cooling channel or chimney designs.

Originality/value

The study is original and presents new findings, since none of the previous studies reported the conditions for which pressure buildup might take place due to mixed convection in vertical channels between parallel plates.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 February 2024

Karthikeyan Paramanandam, Venkatachalapathy S, Balamurugan Srinivasan and Nanda Kishore P V R

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary…

Abstract

Purpose

This study aims to minimize the pressure drop across wavy microchannels using secondary branches without compromising its capacity to transfer the heat. The impact of secondary flows on the pressure drop and heat transfer capabilities at different Reynolds numbers are investigated numerically for different wavy microchannels. Finally, different channels are evaluated using performance evaluation criteria to determine their effectiveness.

Design/methodology/approach

To investigate the flow and heat transfer capabilities in wavy microchannels having secondary branches, a 3D conjugate heat transfer model based on finite volume method is used. In conventional wavy microchannel, secondary branches are introduced at crest and trough locations. For the numerical simulation, a single symmetrical channel is used to minimize computational time and resources and the flow within the channels remains single-phase and laminar.

Findings

The findings indicate that the suggested secondary channels notably improve heat transfer and decrease pressure drop within the channels. At lower flow rates, the secondary channels demonstrate superior performance in terms of heat transfer. However, the performance declines as the flow rate increased. With the same amplitude and wavelength, the introduction of secondary channels reduces the pressure drop compared with conventional wavy channels. Due to the presence of secondary channels, the flow splits from the main channel, and part of the core flow gets diverted into the secondary channel as the flow takes the path of minimum resistance. Due to this flow split, the core velocity is reduced. An increase in flow area helps in reducing pressure drop.

Practical implications

Many complex and intricate microchannels are proposed by the researchers to augment heat dissipation. There are challenges in the fabrication of microchannels, such as surface finish and achieving the required dimensions. However, due to the recent developments in metal additive manufacturing and microfabrication techniques, the complex shapes proposed in this paper are feasible to fabricate.

Originality/value

Wavy channels are widely used in heat transfer and micro-fluidics applications. The proposed wavy microchannels with secondary channels are different when compared to conventional wavy channels and can be used practically to solve thermal challenges. They help achieve a lower pressure drop in wavy microchannels without compromising heat transfer performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 September 2018

Fakhrodin Lalegani, Mohammad Reza Saffarian, Ahmadreza Moradi and Ebrahim Tavousi

According to very small dimensions of the microchannels, producing a microchannel with smooth surfaces is approximately impossible. The surface roughness can have a specific…

315

Abstract

Purpose

According to very small dimensions of the microchannels, producing a microchannel with smooth surfaces is approximately impossible. The surface roughness can have a specific effect on microchannel performances. This paper aims to investigate the changes in friction and pressure drop in the microchannels by considering the different roughness elements on microchannel wall and changes in elementary geometry and flow conditions. Results show a significant effect of roughness on the pressure drop and friction.

Design/methodology/approach

Two-dimensional fluid flow in the rough microchannels is analyzed using FLUENT. Microchannels have a height of 50 µm. Water at room temperature (25°C) has been used as working fluid. The Reynolds numbers are considered in laminar flow range and from 50 to 300.

Findings

The results show that the value of friction factor reduces nonlinearly with an increase in Reynolds number. But, the pressure drops and the Poiseuille number in the microchannels increase with an increase in Reynolds number. The values of the pressure drop and the friction factor increase by increasing the height and size of the roughness elements, but these values reduce with an increase in the distance of roughness elements.

Originality/value

The roughness elements types in this research are rectangular, trapezoidal, elliptical, triangular and complex (composed of multiple types of roughness elements). The effects of the Reynolds number, roughness height, roughness distance and roughness size on the pressure drop and friction in the rough microchannels are investigated and discussed. Furthermore, differences between the effects of five types of roughness elements are identified.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 April 2023

Chinedu Chinakwe, Adekunle Adelaja, Michael Akinseloyin and Olabode Thomas Olakoyejo

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to…

Abstract

Purpose

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to numerically investigate the effects of inclination angle, volume concentration and Reynolds number on the thermal and hydraulic characteristics and entropy generation rates of water-based Al2O3 nanofluids through a smooth circular aluminum pipe in a turbulent flow.

Design/methodology/approach

A constant heat flux of 2,000 Watts is applied to the circular surface of the tube. Reynolds number is varied between 4,000 and 20,000 for different volume concentrations of alumina nanoparticles of 0.5%, 1.0% and 2.0% for tube inclination angles of ±90o, ±60o, ±45o, ±30o and 0o, respectively. The simulation is performed in an ANSYS Fluent environment using the realizable kinetic energy–epsilon turbulent model.

Findings

Results show that +45o tube orientation possesses the largest thermal deviations of 0.006% for 0.5% and 1.0% vol. concentrations for Reynolds numbers 4,000 and 12,000. −45o gives a maximum pressure deviation of −0.06% for the same condition. The heat transfer coefficient and pressure drop give maximum deviations of −0.35% and −0.39%, respectively, for 2.0% vol. concentration for Reynolds number of 20,000 and angle ±90o. A 95%–99.8% and 95%–98% increase in the heat transfer and total entropy generation rates, respectively, is observed for 2.0% volume concentration as tube orientation changes from the horizontal position upward or downward.

Originality/value

Research investigating the effect of inclination angle on thermal-hydraulic performance and entropy generation rates in-tube turbulent flow of nanofluid is very scarce in the literature.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 October 2019

Kanwar Pal Singh, Arvind Kumar and Deo Raj Kaushal

This paper aims to the transportation of high concentration slurry through pipelines that will require thorough understanding of physical and rheological properties of slurry, as…

Abstract

Purpose

This paper aims to the transportation of high concentration slurry through pipelines that will require thorough understanding of physical and rheological properties of slurry, as well as its hydraulic flow behavior. In spite of several contributions by the previous researchers, there is still a need to enrich the current understanding of hydraulic conveying through pipeline at various flow parameters. The pilot plant loop tests, particularly at high concentrations, are tedious, time-consuming and complex in nature. Therefore, in the current research the prediction methodology for slurry pipeline design based on rheological model of the slurry is used for calculation of pressure drop and other design parameters.

Design/methodology/approach

It has been established that slurry rheology plays important role in the prediction of pressure drop for laminar and turbulent flow of commercial slurries through pipeline. In the current research fly ash slurry at high concentration is chosen for rheological analysis. The effect of particle size and solid concentration is experimentally tested over the rheological behavior of slurry and based on the rheological data a correlation is developed for calculation of pressure drop in slurry pipeline.

Findings

The present study strongly supports the analytical approach of pressure drop prediction based on the rheological parameters obtained from the bench scale tests. The rheological properties are strongly influenced by particle size distribution (PSD), shear rate and solid mass concentration of the slurry samples. Pressure drop along the pipeline is highly influenced by flow velocity and solid concentration. The presence of coarser particles in the slurry samples also leads to high pressure drop along the pipeline. As the concentration of solid increase the shear stress and shear viscosity increase cause higher pressure drop.

Research limitations/implications

The transportation of slurry in the pipeline is very complex as there are lot of factors that affect the flow behavior of slurry in pipelines. From the vast study of literature it is found that flow behavior of slurry changes with the change in parameters such as solids concentration, flow velocity, PSD, chemical additives and so on. Therefore, the accurate prediction of hydraulic parameter is very difficult. Different slurry samples behave differently depending upon their physical and rheological characteristics. So it is required to study each slurry samples individually that is time-consuming and costly.

Practical implications

Nowadays in the world, long distance slurry pipelines are used for the transportation of highly concentration slurries. Many researchers have carried out an experiment in the design aspects of hydraulic transportation system. Rheological characteristics of slurry also play crucial role in determining important parameters of hydraulic conveying such as head loss in commercial slurry pipeline. The current research is useful for the prediction of pressure drop based on rheological behavior of fly ash slurry at various solid concentrations. The current research is helpful for finding the effect of solid concentration and flow velocity on the flow behavior of slurry.

Social implications

Slurry pipeline transportation has advantages over rail and road transportation because of low energy consumption, economical, less maintenance and eco-friendly nature. Presently majority of the thermal power plants in India and other parts of the world dispose of coal ash at low concentration (20 per cent by weight) to ash ponds using the slurry pipeline. Transporting solids in slurry pipelines at higher concentrations will require a thorough knowledge of pressure drop. In the current research a rheological model is proposed for prediction of pressure drop in the slurry pipeline, which is useful for optimization of flow parameters.

Originality/value

All the experimental work is done on fly ash slurry samples collect from the Jharli thermal power plant from Haryana State of India. Bench scale tests are performed in the water resource laboratory of IIT Delhi for physical and rheological analysis of slurry. It has been shown in the results that up to solid concentration of 50 per cent by mass all the samples behave as non-Newtonian and follows a Herschel–Bulkley model with shear thickening behavior. In the present research all the result outcomes are unique and original and does not copied from anywhere.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 August 2020

Ali Akbar Abbasian Arani and Reza Moradi

Using turbulators, obstacles, ribs, corrugations, baffles and different tube geometry, and also various arrangements of these components have a noticeable effect on the shell and…

Abstract

Purpose

Using turbulators, obstacles, ribs, corrugations, baffles and different tube geometry, and also various arrangements of these components have a noticeable effect on the shell and tube heat exchangers (STHEs) thermal-hydraulic performance. This study aims to investigate non-Newtonian fluid flow characteristics and heat transfer features of water and carboxyl methyl cellulose (H2O 99.5%:0.5% CMC)-based Al2O3 nanofluid inside the STHE equipped with corrugated tubes and baffles using two-phase mixture model.

Design/methodology/approach

Five different corrugated tubes and two baffle shapes are studied numerically using finite volume method based on SIMPLEC algorithm using ANSYS-Fluent software.

Findings

Based on the obtained results, it is shown that for low-mass flow rates, the disk baffle (DB) has more heat transfer coefficient than that of segmental baffle (SB) configuration, while for mass flow rate more than 1 kg/s, using the SB leads to more heat transfer coefficient than that of DB configuration. Using the DB leads to higher thermal-hydraulic performance evaluation criteria (THPEC) than that of SB configuration in heat exchanger. The THPEC values are between 1.32 and 1.45.

Originality/value

Using inner, outer or inner/outer corrugations (outer circular rib and inner circular rib [OCR+ICR]) tubes for all mass flow rates can increase the THPEC significantly. Based on the present study, STHE with DB and OCR+ICR tubes configuration filled with water/CMC/Al2O3 with f = 1.5% and dnp = 100 nm is the optimum configuration. The value of THPEC in referred case was 1.73, while for outer corrugations and inner smooth, this value is between 1.34 and 1.57, and for outer smooth and inner corrugations, this value is between 1.33 and 1.52.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 June 2021

Jiahao Wang, Guodong Xia, Ran Li, Dandan Ma, Wenbin Zhou and Jun Wang

This study aims to satisfy the thermal management of gallium nitride (GaN) high-electron mobility transistor (HEMT) devices, microchannel-cooling is designed and optimized in this…

Abstract

Purpose

This study aims to satisfy the thermal management of gallium nitride (GaN) high-electron mobility transistor (HEMT) devices, microchannel-cooling is designed and optimized in this work.

Design/methodology/approach

A numerical simulation is performed to analyze the thermal and flow characteristics of microchannels in combination with computational fluid dynamics (CFD) and multi-objective evolutionary algorithm (MOEA) is used to optimize the microchannels parameters. The design variables include width and number of microchannels, and the optimization objectives are to minimize total thermal resistance and pressure drop under constant volumetric flow rate.

Findings

In optimization process, a decrease in pressure drop contributes to increase of thermal resistance leading to high junction temperature and vice versa. And the Pareto-optimal front, which is a trade-off curve between optimization objectives, is obtained by MOEA method. Finally, K-means clustering algorithm is carried out on Pareto-optimal front, and three representative points are proposed to verify the accuracy of the model.

Originality/value

Each design variable on the effect of two objectives and distribution of temperature is researched. The relationship between minimum thermal resistance and pressure drop is provided which can give some fundamental direction for microchannels design in GaN HEMT devices cooling.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 September 2013

O.B. Okedere, J.A. Sonibare, B.S. Fakinle and L.A. Jimoda

The aim of this paper is to provide basic information on the types of particulate cyclones separators used in the chemical and process industries, their principles of operation…

Abstract

Purpose

The aim of this paper is to provide basic information on the types of particulate cyclones separators used in the chemical and process industries, their principles of operation and factors affecting their performance.

Design/methodology/approach

A general review of the types of particle cleaning cyclones used in the chemical and process industries was carried out and the principles guiding their operation and performance discussed. Information which could aid the choice of cyclone for new applications is also discussed.

Findings

It was concluded that the choice of cyclone for any application is associated with a trade‐off between two contrasting performance indicators (collection efficiency and pressure drop). Adequate and accurate data gathering is essential right from the design stage for smooth operation of cyclone.

Originality/value

The paper highlights the general principle of operation of cyclone separators and the factors that affect their performance.

Details

Management of Environmental Quality: An International Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 1 November 2021

Hamed Jafari, Mohammad Goharkhah and Alireza Mahdavi Nejad

This paper aims to analyze the accuracy of the single and two-phase numerical methods for calculation of ferrofluid convective heat transfer in the presence of a magnetic field…

Abstract

Purpose

This paper aims to analyze the accuracy of the single and two-phase numerical methods for calculation of ferrofluid convective heat transfer in the presence of a magnetic field. The findings of current study are compared with previous single-phase numerical results and experimental data. Accordingly, the effect of various parameters including nanoparticles concentration, Reynolds number and magnetic field strength on the performance of the single and two-phase models are evaluated.

Design/methodology/approach

A two-phase mixture numerical study is carried out to investigate the influence of four U-shaped electromagnets on the hydrodynamic and thermal characteristics of Fe3O4/Water ferrofluid flowing inside a heated channel.

Findings

It is observed that the applied external magnetic field signifies the convective heat transfer from the channel surface, despite local reduction at a few locations. The maximum heat transfer enhancement is predicted as 23% and 25% using single and two-phase models, respectively. The difference between the results of the two models is mainly attributed to the slip velocity effect which is accounted for in the two-phase model. The magnetic field gradient leads to a significant increase in the slip velocity which in turn causes a slight difference in velocity and temperature profiles obtained by the single and two-phase models in the magnetic field region. According to percentage error calculation, the two-phase method is generally more accurate than the single-phase method. However, the percentage error of both models improves by decreasing either magnetic field intensity or Reynolds number.

Originality/value

For the first time in the literature, to the best of the authors’ knowledge, the current work analyzes the accuracy of the single and two phase numerical methods for calculation of ferrofluid convective heat transfer in the presence of a magnetic field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 13000