Search results

1 – 10 of over 2000
Article
Publication date: 28 November 2023

Wei Li, Yuxin Huang, Leilei Ji, Lingling Ma and Ramesh Agarwal

The purpose of this study is to explore the transient characteristics of mixed-flow pumps during startup process.

Abstract

Purpose

The purpose of this study is to explore the transient characteristics of mixed-flow pumps during startup process.

Design/methodology/approach

This study uses a full-flow field transient calculation method of mixed-flow pump based on a closed-loop model.

Findings

The findings show the hydraulic losses and internal flow characteristics of the piping system during the start-up process.

Research limitations/implications

Large computational cost.

Practical implications

Improve the accuracy of current numerical simulation results in transient process of mixed-flow pump.

Originality/value

Simplify the setting of boundary conditions in the transient calculation.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 2024

Jun Cheng and Chunxing Gu

As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of…

Abstract

Purpose

As the crucial support component of the propeller power system, the reliability of the operation of submersible pumps is influenced by the lubrication performance of water-lubricated thrust bearings. When the water-lubricated thrust bearings are under start-stop or heavy load conditions, the effect of surface morphology is crucial as the mixed lubrication regime is encountered. This paper aims to develop one mixed lubrication model for the water-lubricated thrust bearings to predict the effects of surface skewness, kurtosis and roughness orientation on the loading carrying capacity and tribological behavior.

Design/methodology/approach

This paper developed one improved mixed lubrication model specifically for the water-lubricated thrust bearing system. In this model, the hydrodynamic model was improved by using the height of the rough surface and its probability density function, combined with the average flow model. The asperity contact model was improved by using the equation for the Pearson system of frequency curves to characterize the non-Gaussian aspect of surface roughness distribution.

Findings

According to the results, negative skewness, large kurtosis and lateral surface pattern can improve the tribological performance of water-lubricated thrust bearings. Optimizing the surface morphology is a reasonable design method that can improve the performance of water-lubricated thrust bearings.

Originality/value

In this paper, one mixed lubrication model specifically for the water-lubricated thrust bearing with the effect of surface roughness into consideration was developed. Based on the developed model, the effect of surface morphology on tribological behavior can be evaluated.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0247/

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 January 2024

Guibin Tan, Jinfu Li, Cheng Zhou, Ziwei Luo, Xing Huang and Fei Guo

This paper aims to focus on the high-speed rotary lip seal in aircraft engines, combining its service parameters, its own structure and application conditions, to study the…

Abstract

Purpose

This paper aims to focus on the high-speed rotary lip seal in aircraft engines, combining its service parameters, its own structure and application conditions, to study the influence of different eccentric forms, eccentricity, rotational speed and other factors on the performance of the rotary lip seal.

Design/methodology/approach

A numerical simulation model for high-speed eccentric rotary lip seals has been developed based on the theory of elastic hydrodynamic lubrication. This model comprehensively considers the coupling of multiple physical fields, including interface hydrodynamics, macroscopic solid mechanics and surface microscopic contact mechanics, under the operating conditions of rotary lip seals. The model takes into account eccentricity and uses the hazardous cross-sectional method to quantitatively predict sealing performance parameters, such as leakage rate and friction force.

Findings

Eccentricity has a large impact on lip seal performance; lips are more susceptible to wear failure under static eccentricity and to leakage failure under dynamic eccentricity.

Originality/value

This study provides a new idea for the design of rotary lip seal considering eccentricity, which is of guiding significance for the engineering application of rotary lip seal.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 April 2024

Cheng Xiong, Bo Xu and Zhenqian Chen

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Abstract

Purpose

This study aims to investigate the rarefaction effects on flow and thermal performances of an equivalent sand-grain roughness model for aerodynamic thrust bearing.

Design/methodology/approach

In this study, a model of gas lubrication thrust bearing was established by modifying the wall roughness and considering rarefaction effect. The flow and lubrication characteristics of gas film were discussed based on the equivalent sand roughness model and rarefaction effect.

Findings

The boundary slip and the surface roughness effect lead to a decrease in gas film pressure and temperature, with a maximum decrease of 39.2% and 8.4%, respectively. The vortex effect present in the gas film is closely linked to the gas film’s pressure. Slip flow decreases the vortex effect, and an increase in roughness results in the development of slip flow. The increase of roughness leads to a decrease for the static and thermal characteristics.

Originality/value

This work uses the rarefaction effect and the equivalent sand roughness model to investigate the lubrication characteristics of gas thrust bearing. The results help to guide the selection of the surface roughness of rotor and bearing, so as to fully control the rarefaction effect and make use of it.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 March 2024

Heji Zhang, Dezhao Lu, Wei Pan, Xing Rong and Yongtao Zhang

The purpose of this study is to design a closed hydrostatic guideway has the ability to resist large-side load, pitch moments and yaw moments, has good stiffness and damping…

Abstract

Purpose

The purpose of this study is to design a closed hydrostatic guideway has the ability to resist large-side load, pitch moments and yaw moments, has good stiffness and damping characteristics, and provides certain beneficial guidance for the design of large-span closed hydrostatic guideway on the basis of providing a large vertical load bearing capacity.

Design/methodology/approach

The Reynolds’ equation and flow continuity equation are solved simultaneously by the finite difference method, and the perturbation method and the finite disturbance method is used for calculating the dynamic characteristics. The static and dynamic characteristics, including recess pressure, flow of lubricating oil, carrying capacity, pitch moment, yaw moment, dynamic stiffness and damping, are comprehensively analyzed.

Findings

The designed closed hydrostatic guideway has the ability to resist large lateral load, pitch moment and yaw moment and has good stiffness and damping characteristics, on the basis of being able to provide large vertical carrying capacity, which can meet the application requirements of heavy two-plate injection molding machine (TPIMM).

Originality/value

This paper researches static and dynamic characteristics of a large-span six-slider closed hydrostatic guideway used in heavy TPIMM, emphatically considering pitch moment and yaw moment. Some useful guidance is given for the design of large-span closed hydrostatic guideway.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 November 2023

Mengxia Du, Qiao Wang, Yan Zhang, Yu Bai, Chunqiu Wei and Chunyan Liu

As to different angles of attack and nonlinear problems caused by high temperatures in coexisting hypersonic aircraft, people mainly rely on fluid software for research but lack…

Abstract

Purpose

As to different angles of attack and nonlinear problems caused by high temperatures in coexisting hypersonic aircraft, people mainly rely on fluid software for research but lack analysis of flow mechanisms. Owing to computational difficulties, few people use numerical algorithms to combine them for discussion. Hence, this study aims to make a deep inquiry into the laminar flow and heat transfer of compressible Newtonian fluid in hypersonic aircraft with small attack angles.

Design/methodology/approach

In this paper, on the basis of mass, momentum and energy conservation laws, the governing equations of the hypersonic boundary layer are established. Viscosity, specific heat capacity and thermal conductivity are considered nonlinear functions concerning temperature. In virtue of the MacCormack finite difference method, the stationary numerical solutions are solved directly, and the validity of the algorithm is verified.

Findings

The results demonstrate that at Mach number 5, compared to the 0° attack angle, the maximum temperature near-wall at the 3° attack angle increases by about 25%. An enjoyable phenomenon is discovered, where the position corresponding to the maximum wall shear force shifts back as the attack angle and Mach number increase. The relationship between the near-wall maximum temperature versus attack angle and Mach number is fitted through numerical calculation results.

Originality/value

Empirical formulas can be used to estimate heat transfer characteristics at small attack angles, which will guide the design of aircraft thermal protection systems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 February 2024

Jagadesh Vardagala, Sreenadh Sreedharamalle, Ajithkumar Moorthi, Sucharitha Gorintla and Lakshminarayana Pallavarapu

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix…

Abstract

Purpose

Ohmic heating generates temperature with the help of electrical current and resists the flow of electricity. Also, it generates heat rapidly and uniformly in the liquid matrix. Electrically conducting biofluid flows with Ohmic heating have many biomedical and industrial applications. The purpose of this study is to provide the significance of the effects of Ohmic heating and viscous dissipation on electrically conducting Casson nanofluid flow driven by peristaltic pumping through a vertical porous channel.

Design/methodology/approach

In this analysis, the non-Newtonian properties of fluid will be characterized by the Casson fluid model. The long wavelength approach reduces the complexity of the governing system of coupled partial differential equations with non-linear components. Using a regular perturbation approach, the solutions for the flow quantities are established. The fascinating and essential characteristics of flow parameters such as the thermal Grashof number, nanoparticle Grashof number, magnetic parameter, Brinkmann number, permeability parameter, Reynolds number, Casson fluid parameter, thermophoresis parameter and Brownian movement parameter on the convective peristaltic pumping are presented and thoroughly addressed. Furthermore, the phenomenon of trapping is illustrated visually.

Findings

The findings indicate that intensifying the permeability and Casson fluid parameters boosts the temperature distribution. It is observed that the velocity profile is elevated by enhancing the thermal Grashof number and perturbation parameter, whereas it reduces as a function of the magnetic parameter and Reynolds number. Moreover, trapped bolus size upsurges for greater values of nanoparticle Grashof number and magnetic parameter.

Originality/value

There are some interesting studies in the literature to explain the nature of the peristaltic flow of non-Newtonian nanofluids under various assumptions. It is observed that there is no study in the literature as investigated in this paper.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 April 2024

Amanda Norazman, Zulhanafi Paiman, Syahrullail Samion, Muhammad Noor Afiq Witri Muhammad Yazid and Zuraidah Rasep

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent…

11

Abstract

Purpose

The purpose of this paper is to investigate the performance of bio-based lubricants (BBL), namely, palm mid-olein (PMO) enriched with an antioxidant agent, tertiary-butylhydroquinone (TBHQ) and a viscosity improver, ethylene-vinyl acetate (EVA), in journal bearing (JB) applications.

Design/methodology/approach

Samples of the BBL were prepared by blending it with TBHQ and EVA at various blending ratios. The oxidative stability (OS) and viscosity of the BBL samples were examined using differential scanning calorimetry and a viscometer, respectively. Meanwhile, their performance in JB applications was evaluated through the use of a JB test rig with a 0.5 length-to-diameter ratio at various operating conditions.

Findings

It was found that the combination of PMO + TBHQ + EVA demonstrated a superior oil film pressure and load-carrying capacity, resulting in a reduced friction coefficient and a smaller attitude angle compared to the use of only PMO or VG68. However, it was observed that the addition of TBHQ and EVA to the PMO did not have a significant impact on the minimum oil film thickness.

Practical implications

The results would be quite useful for researchers generally and designers of bearings in particular.

Originality/value

This study used PMO as the base stock, and its compatibility with TBHQ and EVA was investigated in terms of its OS and viscosity. The performance of this treated BBL was evaluated in a hydrodynamic JB.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2023-0363/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 February 2024

Rajesh Shah, Blerim Gashi, Vikram Mittal, Andreas Rosenkranz and Shuoran Du

Tribological research is complex and multidisciplinary, with many parameters to consider. As traditional experimentation is time-consuming and expensive due to the complexity of…

Abstract

Purpose

Tribological research is complex and multidisciplinary, with many parameters to consider. As traditional experimentation is time-consuming and expensive due to the complexity of tribological systems, researchers tend to use quantitative and qualitative analysis to monitor critical parameters and material characterization to explain observed dependencies. In this regard, numerical modeling and simulation offers a cost-effective alternative to physical experimentation but must be validated with limited testing. This paper aims to highlight advances in numerical modeling as they relate to the field of tribology.

Design/methodology/approach

This study performed an in-depth literature review for the field of modeling and simulation as it relates to tribology. The authors initially looked at the application of foundational studies (e.g. Stribeck) to understand the gaps in the current knowledge set. The authors then evaluated a number of modern developments related to contact mechanics, surface roughness, tribofilm formation and fluid-film layers. In particular, it looked at key fields driving tribology models including nanoparticle research and prosthetics. The study then sought out to understand the future trends in this research field.

Findings

The field of tribology, numerical modeling has shown to be a powerful tool, which is both time- and cost-effective when compared to standard bench testing. The characterization of tribological systems of interest fundamentally stems from the lubrication regimes designated in the Stribeck curve. The prediction of tribofilm formation, film thickness variation, fluid properties, asperity contact and surface deformation as well as the continuously changing interactions between such parameters is an essential challenge for proper modeling.

Originality/value

This paper highlights the major numerical modeling achievements in various disciplines and discusses their efficacy, assumptions and limitations in tribology research.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0076/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 19 April 2024

Oguzhan Ozcelebi, Jose Perez-Montiel and Carles Manera

Might the impact of the financial stress on exchange markets be asymmetric and exposed to regime changes? Departing from the existing literature, highlighting that the domestic…

Abstract

Purpose

Might the impact of the financial stress on exchange markets be asymmetric and exposed to regime changes? Departing from the existing literature, highlighting that the domestic and foreign financial stress in terms of money market have substantial effects on exchange market, this paper aims to investigate the impacts of the bond yield spreads of three emerging countries (Mexico, Russia, and South Korea) on their exchange market pressure indices using monthly observations for the period 2010:01–2019:12. Additionally, the paper analyses the impact of bond yield spread of the US on the exchange market pressure indices of the three mentioned emerging countries. The authors hypothesized whether the negative and positive changes in the bond yield spreads have varying effects on exchange market pressure indices.

Design/methodology/approach

To address the research question, we measure the bond yield spread of the selected countries by using the interest rate spread between 10-year and 3-month treasury bills. At the same time, the exchange market pressure index is proxied by the index introduced by Desai et al. (2017). We base the empirical analysis on nonlinear vector autoregression (VAR) models and an asymmetric quantile-based approach.

Findings

The results of the impulse response functions indicate that increases/decreases in the bond yield spreads of Mexico, Russia and South Korea raise/lower their exchange market pressure, and the effects of shocks in the bond yield spreads of the US also lead to depreciation/appreciation pressures in the local currencies of the emerging countries. The quantile connectedness analysis, which allows for the role of regimes, reveals that the weights of the domestic and foreign bond yield spread in explaining variations of exchange market pressure indices are higher when exchange market pressure indices are not in a normal regime, indicating the role of extreme development conditions in the exchange market. The quantile regression model underlines that an increase in the domestic bond yield spread leads to a rise in its exchange market pressure index during all exchange market pressure periods in Mexico, and the relevant effects are valid during periods of high exchange market pressure in Russia. Our results also show that Russia differs from Mexico and South Korea in terms of the factors influencing the demand for domestic currency, and we have demonstrated the role of domestic macroeconomic and financial conditions in surpassing the effects of US financial stress. More specifically, the impacts of the domestic and foreign financial stress vary across regimes and are asymmetric.

Originality/value

This study enriches the literature on factors affecting the exchange market pressure of emerging countries. The results have significant economic implications for policymakers, indicating that the exchange market pressure index may trigger a financial crisis and economic recession.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

1 – 10 of over 2000