Search results

1 – 10 of 653
Article
Publication date: 13 December 2022

Zhenhua Luo, Juntao Guo, Jianqiang Han and Yuhong Wang

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in…

Abstract

Purpose

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in China is in the initial stage of development, which is prone to construction safety issues. This study aims to evaluate the construction safety risks of prefabricated subway stations in China and formulate corresponding countermeasures to ensure construction safety.

Design/methodology/approach

A construction safety risk evaluation index system for the prefabricated subway station was established through literature research and the Delphi method. Furthermore, based on the structure entropy weight method, matter-element theory and evidence theory, a hybrid evaluation model is developed to evaluate the construction safety risks of prefabricated subway stations. The basic probability assignment (BPA) function is obtained using the matter-element theory, the index weight is calculated using the structure entropy weight method to modify the BPA function and the risk evaluation level is determined using the evidence theory. Finally, the reliability and applicability of the evaluation model are verified with a case study of a prefabricated subway station project in China.

Findings

The results indicate that the level of construction safety risks in the prefabricated subway station project is relatively low. Man risk, machine risk and method risk are the key factors affecting the overall risk of the project. The evaluation results of the first-level indexes are discussed, and targeted countermeasures are proposed. Therefore, management personnel can deeply understand the construction safety risks of prefabricated subway stations.

Originality/value

This research fills the research gap in the field of construction safety risk assessment of prefabricated subway stations. The methods for construction safety risk assessment are summarized to establish a reliable hybrid evaluation model, laying the foundation for future research. Moreover, the construction safety risk evaluation index system for prefabricated subway stations is proposed, which can be adopted to guide construction safety management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 8 June 2021

Shufeng Li, Zhang Jiaolei, Di Zhao and Le Deng

This study aims to further study the fire resistance of prefabricated concrete beam-column joints with end-plate connection. This paper aims to analyze the fire resistance of this…

Abstract

Purpose

This study aims to further study the fire resistance of prefabricated concrete beam-column joints with end-plate connection. This paper aims to analyze the fire resistance of this joint in prefabricated reinforced concrete frame structure (PRCS).

Design/methodology/approach

First, the accuracy of the model is verified by using the test data. Based on this, a refined finite element model of PRCS structure with two stories and two spans is established. The influence of four working conditions with different fire floors (positions) and different axial compression ratios on the deformation, failure and fire resistance of PRCS structure are analyzed.

Findings

The results show that under the four working conditions, the fire resistance of the PRCS structure under Condition 1 and Condition 2 is smaller. It shows that the beam deformation develops slowly in PRCS structure under four kinds of fire positions, and the large displacement emerges 60 min later, which is poles apart from that of prefabricated beam column members. With the increase of the fire time, the material is damaged and deteriorated, which leads to the eccentricity of the axial load, so that the column top appears large lateral displacement. Under the Conditions 1 and 3, the lateral displacement of the column gradually decreases as the axial compression ratio rises.

Originality/value

It is found that there is a distinct lack of researching on the fire resistance of prefabricated joints, and the existed research studies are limited to the fire resistance of members. Thus, it is necessary to strengthen the first floor and side column design of prefabricated frame structure.

Details

Journal of Structural Fire Engineering, vol. 12 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 July 2020

Shufeng Li, Le Deng and Zhao Di

The purpose of this study is to put forward a high-strength bolt end-plate connection of prefabricated concrete beam-column joint and carry out the pseudo-static test.

Abstract

Purpose

The purpose of this study is to put forward a high-strength bolt end-plate connection of prefabricated concrete beam-column joint and carry out the pseudo-static test.

Design/methodology/approach

ABAQUS finite element software is used to study the fire resistance performance of high-strength bolt end-plate prefabricated joint. This mainly considers the influence of axial compression ratio, screw preload, end-plate thickness and steel hoop thickness.

Findings

The results show that the thickness of end-plate and steel hoop has a certain effect on the fire resistance. The change of screw preload has little effect on the fire resistance limit. Compared with the cast-in-place concrete beam-column joint, the deformation trend of column-beam end of the fabricated joint is basically the same as that of cast-in-place joint.

Originality/value

To study the mechanical performance of this kind of joint more comprehensively, the finite element software is used to study the prefabricated concrete beam-column joint with end-plates, and the effects of axial compression ratio, screw preload, end-plate thickness and steel hoop thickness on the fire resistance of joints are mainly considered.

Details

Journal of Structural Fire Engineering, vol. 11 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 28 February 2024

Dat Tien Doan, Tuyet Phuoc Anh Mai, Ali GhaffarianHoseini, Amirhosein Ghaffarianhoseini and Nicola Naismith

This study aims to identify the primary research areas of modern methods of construction (MMC) along with its current trends and developments.

Abstract

Purpose

This study aims to identify the primary research areas of modern methods of construction (MMC) along with its current trends and developments.

Design/methodology/approach

A combination of bibliometric and qualitative analysis is adopted to examine 1,957 MMC articles in the Scopus database. With the support of CiteSpace 6.1.R6, the clusters, leading authors, journals, institutions and countries in the field of MMC are examined.

Findings

Offsite construction, inter-modular connections, augmenting output, prefabricated concrete beams and earthquake-resilient prefabricated beam–column steel joints are the top five research areas in MMC. Among them, offsite construction and inter-modular connections are significantly focused, with many research articles. The potential for collaboration, among prominent authors such as Wang, J., Liu, Y. and Wang, Y., explains the recent rapid growth of the MMC field of research. With a total of 225 articles, Engineering Structures is the journal that has published the most articles on MMC. China is the leading country in this field, and the Ministry of Education China is the top institution in MMC.

Originality/value

The findings of this study bear significant implications for stakeholders in academia and industry alike. In academia, these insights allow researchers to identify research gaps and foster collaboration, steering efforts toward innovative and impactful outcomes. For industries using MMC practices, the clarity provided on MMC techniques facilitates the efficient adoption of best practices, thereby promoting collaboration, innovation and global problem-solving within the construction field.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 9 November 2021

Shufeng Li, Di Zhao and Yating Zhou

Concrete-filled steel tube structures are widely used for their high bearing capacity, good plasticity, good fire resistance and optimal seismic performance. In order to give full…

Abstract

Purpose

Concrete-filled steel tube structures are widely used for their high bearing capacity, good plasticity, good fire resistance and optimal seismic performance. In order to give full play to the advantages of concrete-filled steel tube, this paper proposes a prefabricated concrete-filled steel tube frame joint.

Design/methodology/approach

The concrete-filled steel tube column and beam are connected by high-strength bolted end-plate, and the steel bars in the concrete beam are welded vertically with the end-plates through the enlarged pier head. In addition, the finite element software ABAQUS is used numerically to study the seismic performance of the structure.

Findings

The ductility coefficient of the joint is in 1.72–6.82, and greater than 2.26 as a whole. The equivalent viscous damping coefficient of the joint is 0.13–3.03, indicating that the structure has good energy dissipation capacity.

Originality/value

The structure is convenient for construction and overcomes the shortcomings of the previous on-site welding and on-site concrete pouring. The high-strength bolted end-plate connection can effectively transfer the load, and each component can give play to its material characteristics.

Details

International Journal of Structural Integrity, vol. 13 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 January 2023

Sheng Xu, Linfeng Zhou and Patrick X.W. Zou

The quality liability of prefabricated components (PCs) is a major issue among key stakeholders. The blockchain-based quality tracking systems are supposed to support a more…

Abstract

Purpose

The quality liability of prefabricated components (PCs) is a major issue among key stakeholders. The blockchain-based quality tracking systems are supposed to support a more transparent and trusting quality control process. However, many factors affect the stakeholders' willingness toward the adoption of such quality tracking systems. The purpose of this research is to investigate the key factors that influence the stakeholders' adoption decisions toward the application of the quality tracking system in PCs and develop coping strategies.

Design/methodology/approach

An evolutionary game model is established that includes the manufacturer, constructor and developer. Four scenarios of equilibriums and the game's evolutionary stable strategies are analyzed, and the corresponding stability conditions are then obtained. Based on the tripartite game model, two representative projects are used as case studies to simulate how different factors affect the stakeholders' decisions.

Findings

First, trade-offs between cost and benefits were the most prominent factor in the adoption decision-making. Second, the advancement of technologies would compensate for their immaturity. Third, subsidy and penalty provision of the developer and high-level trust both incentivize the stakeholders to adopt the quality tracking systems.

Originality/value

This research investigates the influence of technology, environment and participant related factors on the adoption decisions of the quality tracking system for PCs and discovered that technology maturity and advancement played an essential role. It is expected that the research findings would be of value to policy makers and project management personnel for better quality control of prefabricated construction.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 December 2020

E.M.A.C. Ekanayake, Geoffrey Qiping Shen, Mohan Kumaraswamy and Emmanuel Kingsford Owusu

Industrialized construction (IC) has been recognized as a game-changing approach in Hong Kong (HK). However, the increasing risks of disruptions in IC supply chains (SCs) raise SC…

1344

Abstract

Purpose

Industrialized construction (IC) has been recognized as a game-changing approach in Hong Kong (HK). However, the increasing risks of disruptions in IC supply chains (SCs) raise SC vulnerability levels, prompting attention to developing supply chain resilience (SCR). Since SCR is only attainable through overcoming critical supply chain vulnerabilities (CSCV) with enhanced SC capabilities, this study first aimed to determine the most CSCV of ICSCs by addressing this current research gap and practical need.

Design/methodology/approach

Drawing on SCV factors identified from a precursor literature review, an empirical study of IC in HK was conducted using a questionnaire survey and interviews with industry experts. Focussed significance analysis of the data collected through questionnaire survey enabled the selection of 26 CSCV as appropriate to IC. Next, factor analysis was conducted, enabling the grouping of these CSCV under five components. The results were verified and reinforced by interview findings.

Findings

The results revealed 26 CSCV pertinent to resilient ICSCs in HK with five underlying components: economic, technological, procedural, organizational and production-based vulnerabilities. Loss of skilled labour is the most critical vulnerability, whereas organizational SCV is the most critical component identified.

Originality/value

Findings of this study would motivate IC project professionals to appreciate and address the CSCV in the context of five components and thereby develop adequate specific capabilities to successfully withstand these CSCV. This should trigger future studies to map CSCV with appropriate capabilities in developing an envisaged powerful assessment model for evaluating the SCR in IC in HK.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 October 2020

Jiaqiang Chen

The main supporting frame of steel structure buildings is steel, and the beam-column joints of the steel structure directly affect the stability and strength of the supporting…

Abstract

Purpose

The main supporting frame of steel structure buildings is steel, and the beam-column joints of the steel structure directly affect the stability and strength of the supporting frame.

Design/methodology/approach

This paper briefly introduced the beam-column joints which are used for ensuring the stability of buildings in the steel structure building, selected the fabricated beam-column joints which were different from the traditional welding methods, tested the fabricated beam-column joints with the reaction frame and jack and detected the influence of the thickness and length of the splice plate on the mechanical properties of joints.

Findings

The results showed that the joint stress and the displacement in the vertical direction increased under greater load no matter which kind of fabricated joint was used; under the same load, the thickness and length of the splice significantly affected the mechanical properties of joints, and the larger the thickness and length, the smaller the joint stress and displacement in the vertical direction.

Originality/value

To sum up, increasing the thickness or length of the splice plate of the fabricated joint can effectively improve the mechanical properties of joints.

Details

International Journal of Building Pathology and Adaptation, vol. 39 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 26 September 2019

Khadidja El-Bahdja Djebbar, Souria Salem and Abderrahmane Mokhtari

The purpose of this paper is to analyze energy performance of the multi-storey buildings built in the city of Tlemcen between 1872 and 2016.

Abstract

Purpose

The purpose of this paper is to analyze energy performance of the multi-storey buildings built in the city of Tlemcen between 1872 and 2016.

Design/methodology/approach

A diagnosis based on a bottom-up methodology, using statistical techniques and engineering, has been developed and applied. To do this, demand condition analysis was conducted using a data collection survey on a sample of 100 case studies. Physical characteristics of the buildings have been determined through the archetype by period. This serves to define the strengths and weaknesses of buildings as energy consumers.

Findings

The obtained results showed that dwellings built between 1872 and 1920 offer better energy performance with a consumption index close to 130kWh/m2/year and this compared to the five periods considered. For dwellings built between 1974 and 1989, energy consumption is higher with an index approaching 300kWh/m2/year, thus qualifying the buildings of this period as energy intensive.

Originality/value

A database is established to collect physical information on the existing housing stock and thus allow their classification vis-à-vis of the energy label. This study is part of a research project aimed at evaluating and determining optimal measures for energy rehabilitation of multi-family buildings in Tlemcen. Thermal rehabilitation solutions are proposed using thermal simulations, in the following studies, to improve thermal performance of existing buildings. This study constitutes the first step of a roadmap applicable to other cities constituting climatic zones in Algeria. This helps to enrich the Algerian thermal regulation in thermal rehabilitation of existing residential buildings and conception of new ones, in urban areas with a similar climate.

Details

International Journal of Building Pathology and Adaptation, vol. 38 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 January 1991

F.O. Kerschkamp

The processes involved in developing and implementing acomputer‐based school facilities management system for a regionallyindependent organisation are described. Since 1986…

Abstract

The processes involved in developing and implementing a computer‐based school facilities management system for a regionally independent organisation are described. Since 1986 approximately 300 schoolbuildings covering approximately 5,000,000 sq. ft have been surveyed. The buildings are mainly post‐war and some date from the 1930s with post‐war extensions or partial modernisations. The first three implemented modules concern the graphical/statistical data and condition appraisal and procedures (five‐year maintenance programme). Some results concerning quality levels and building age, and typical building damages, as well as a consideration of future developments are included.

Details

Facilities, vol. 9 no. 1/2
Type: Research Article
ISSN: 0263-2772

Keywords

1 – 10 of 653