Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 4 December 2023

Diego Espinosa Gispert, Ibrahim Yitmen, Habib Sadri and Afshin Taheri

The purpose of this research is to develop a framework of an ontology-based Asset Information Model (AIM) for a Digital Twin (DT) platform and enhance predictive maintenance…

Abstract

Purpose

The purpose of this research is to develop a framework of an ontology-based Asset Information Model (AIM) for a Digital Twin (DT) platform and enhance predictive maintenance practices in building facilities that could enable proactive and data-driven decision-making during the Operation and Maintenance (O&M) process.

Design/methodology/approach

A scoping literature review was accomplished to establish the theoretical foundation for the current investigation. A study on developing an ontology-based AIM for predictive maintenance in building facilities was conducted. Semi-structured interviews were conducted with industry professionals to gather qualitative data for ontology-based AIM framework validation and insights.

Findings

The research findings indicate that while the development of ontology faced challenges in defining missing entities and relations in the context of predictive maintenance, insights gained from the interviews enabled the establishment of a comprehensive framework for ontology-based AIM adoption in the Facility Management (FM) sector.

Practical implications

The proposed ontology-based AIM has the potential to enable proactive and data-driven decision-making during the process, optimizing predictive maintenance practices and ultimately enhancing energy efficiency and sustainability in the building industry.

Originality/value

The research contributes to a practical guide for ontology development processes and presents a framework of an Ontology-based AIM for a Digital Twin platform.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 6 October 2022

Roman Fedorov and Dmitry Pavlyuk

Research questions: Is there a systemic relationship between different methods of screening candidates for predictive maintenance? How do the goals of a predictive project…

145

Abstract

Purpose

Research questions: Is there a systemic relationship between different methods of screening candidates for predictive maintenance? How do the goals of a predictive project influence the choice of a dropout method? How do the company’s characteristics implementing the predictive project influence the selection of the dropout method?

Design/methodology/approach

The authors described and compiled a taxonomy of currently known methods of screening candidate aircraft components for predictive maintenance for maintenance, repairs and overhaul organizations; identified the boundaries of each way; analyzed the advantages and disadvantages of existing methods; and formulated directions for further development of methods of screening for maintenance, repairs and overhaul organizations.

Findings

The authors identified the relationship between various screening methods by developing the approach proposed by Tiddens WW and supplementing it with economic methods. The authors built them into a single hierarchical structure and linked them with the parameters of the predictive project. The principal advantage of the proposed taxonomy is a clear relationship between the structure of the screening methods and the goals of the predictive project and the characteristics of the company that implements the project.

Originality/value

The authors of the article proposed groups of screening methods for predictive maintenance based on economic indicators to improve the effectiveness and efficiency of the screening process.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 19 April 2022

D. Divya, Bhasi Marath and M.B. Santosh Kumar

This study aims to bring awareness to the developing of fault detection systems using the data collected from sensor devices/physical devices of various systems for predictive…

1655

Abstract

Purpose

This study aims to bring awareness to the developing of fault detection systems using the data collected from sensor devices/physical devices of various systems for predictive maintenance. Opportunities and challenges in developing anomaly detection algorithms for predictive maintenance and unexplored areas in this context are also discussed.

Design/methodology/approach

For conducting a systematic review on the state-of-the-art algorithms in fault detection for predictive maintenance, review papers from the years 2017–2021 available in the Scopus database were selected. A total of 93 papers were chosen. They are classified under electrical and electronics, civil and constructions, automobile, production and mechanical. In addition to this, the paper provides a detailed discussion of various fault-detection algorithms that can be categorised under supervised, semi-supervised, unsupervised learning and traditional statistical method along with an analysis of various forms of anomalies prevalent across different sectors of industry.

Findings

Based on the literature reviewed, seven propositions with a focus on the following areas are presented: need for a uniform framework while scaling the number of sensors; the need for identification of erroneous parameters; why there is a need for new algorithms based on unsupervised and semi-supervised learning; the importance of ensemble learning and data fusion algorithms; the necessity of automatic fault diagnostic systems; concerns about multiple fault detection; and cost-effective fault detection. These propositions shed light on the unsolved issues of predictive maintenance using fault detection algorithms. A novel architecture based on the methodologies and propositions gives more clarity for the reader to further explore in this area.

Originality/value

Papers for this study were selected from the Scopus database for predictive maintenance in the field of fault detection. Review papers published in this area deal only with methods used to detect anomalies, whereas this paper attempts to establish a link between different industrial domains and the methods used in each industry that uses fault detection for predictive maintenance.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 26 May 2023

Mpho Trinity Manenzhe, Arnesh Telukdarie and Megashnee Munsamy

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

1705

Abstract

Purpose

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

Design/methodology/approach

The extant literature in physical assets maintenance depicts that poor maintenance management is predominantly because of a lack of a clearly defined maintenance work management process model, resulting in poor management of maintenance work. This paper solves this complex phenomenon using a combination of conceptual process modeling and system dynamics simulation incorporating 4IR technologies. A process for maintenance work management and its control actions on scheduled maintenance tasks versus unscheduled maintenance tasks is modeled, replicating real-world scenarios with a digital lens (4IR technologies) for predictive maintenance strategy.

Findings

A process for maintenance work management is thus modeled and simulated as a dynamic system. Post-model validation, this study reveals that the real-world maintenance work management process can be replicated using system dynamics modeling. The impact analysis of 4IR technologies on maintenance work management systems reveals that the implementation of 4IR technologies intensifies asset performance with an overall gain of 27.46%, yielding the best maintenance index. This study further reveals that the benefits of 4IR technologies positively impact equipment defect predictability before failure, thereby yielding a predictive maintenance strategy.

Research limitations/implications

The study focused on maintenance work management system without the consideration of other subsystems such as cost of maintenance, production dynamics, and supply chain management.

Practical implications

The maintenance real-world quantitative data is retrieved from two maintenance departments from company A, for a period of 24 months, representing years 2017 and 2018. The maintenance quantitative data retrieved represent six various types of equipment used at underground Mines. The maintenance management qualitative data (Organizational documents) in maintenance management are retrieved from company A and company B. Company A is a global mining industry, and company B is a global manufacturing industry. The reliability of the data used in the model validation have practical implications on how maintenance work management system behaves with the benefit of 4IR technologies' implementation.

Social implications

This research study yields an overall benefit in asset management, thereby intensifying asset performance. The expected learnings are intended to benefit future research in the physical asset management field of study and most important to the industry practitioners in physical asset management.

Originality/value

This paper provides for a model in which maintenance work and its dynamics is systematically managed. Uncontrollable corrective maintenance work increases the complexity of the overall maintenance work management. The use of a system dynamic model and simulation incorporating 4IR technologies adds value on the maintenance work management effectiveness.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 14 March 2023

Roosefert Mohan, J. Preetha Roselyn and R. Annie Uthra

The artificial intelligence (AI) based total productive maintenance (TPM) condition based maintenance (CBM) approach through Industry 4.0 transformation can well predict the…

Abstract

Purpose

The artificial intelligence (AI) based total productive maintenance (TPM) condition based maintenance (CBM) approach through Industry 4.0 transformation can well predict the breakdown in advance to eliminate breakdown.

Design/methodology/approach

Meeting the customer requirement as per the delivery schedule with the existing resources are always a big challenge in industries. Any catastrophic breakdown in the equipment leads to increase in production loss, damage to machines, repair cost, time and affects delivery. If these breakdowns are predicted in advance, the breakdown can be addressed before its occurrence and the demand supply chain can be met. TPM is one of the essential operational excellence tool used in industries to utilize the existing resources of a plant in a optimal way. The conventional time based maintenance (TBM) and CBM approach of TPM in Industry 3.0 is time consuming and not accurate enough to achieve zero down time.

Findings

The proposed AI and IIoT based TPM is achieved in a digitalized data oriented platform to monitor and control the health status of the machine which may reduce the catastrophic breakdown by 95% and also improves the quality rate and machine performance rate. Based on the identified key signature parameters related to major breakdown are measured using the sensors, digitalised by programmable logic controller (PLC) and monitored by supervisory control and data acquisition (SCADA) and predicted in server or cloud.

Originality/value

Long short term memory based deep learning network was developed as a regression forecasting model to predict the remaining useful life RUL of the part or assembly and based on the predictions, corrective action has been implemented before the occurrence of breakdown. The reliability and consistency of the proposed approach are validated and horizontally deployed in similar machines to achieve zero downtime.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 22 September 2023

Tahmineh Raoofi and Sahin Yasar

This study aims to elaborate on the existing link between maintenance practices and the digital world while also highlighting any unaddressed potential for digital transformation…

Abstract

Purpose

This study aims to elaborate on the existing link between maintenance practices and the digital world while also highlighting any unaddressed potential for digital transformation in aircraft maintenance. Additionally, explore how digital technologies contribute to optimizing efficiency within the continuing airworthiness management (CAM) processes.

Design/methodology/approach

A literature review was performed to provide a precise review of the authority regulations on CAM processes and existing literature on digital transformation, including artificial intelligence, machine learning, neural network and big data in civil aircraft maintenance and continuing airworthiness processes. This method is used to organize, analyze and structure the body of literature to identify research gaps in the selected scope of the study.

Findings

The high position of digital technologies in preventive and predictive maintenance and the need for legislative development for using them in CAM are emphasized. Moreover, it is shown in which area of CAM scientific research has been performed regarding the application of frontier digital technologies. In addition, the gaps between maintenance practices and the digital world, along with the potential scopes of digital transformation which has not been well addressed, are identified. And finally, how digital technologies can effectively increase efficiency in CAM processes is discussed.

Originality/value

To the best of our knowledge, no study comprehensively determined the body of existing knowledge on the aspects of digitalization related to the field of continuing airworthiness management and aircraft maintenance. The results of this study provide a positive contribution to airlines, policymakers, manufacturers and maintenance organizations achieving additional benefits from the implementation of digital technologies in the CAM processes.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 17 November 2023

Peiman Tavakoli, Ibrahim Yitmen, Habib Sadri and Afshin Taheri

The purpose of this study is to focus on structured data provision and asset information model maintenance and develop a data provenance model on a blockchain-based digital twin…

Abstract

Purpose

The purpose of this study is to focus on structured data provision and asset information model maintenance and develop a data provenance model on a blockchain-based digital twin smart and sustainable built environment (DT) for predictive asset management (PAM) in building facilities.

Design/methodology/approach

Qualitative research data were collected through a comprehensive scoping review of secondary sources. Additionally, primary data were gathered through interviews with industry specialists. The analysis of the data served as the basis for developing blockchain-based DT data provenance models and scenarios. A case study involving a conference room in an office building in Stockholm was conducted to assess the proposed data provenance model. The implementation utilized the Remix Ethereum platform and Sepolia testnet.

Findings

Based on the analysis of results, a data provenance model on blockchain-based DT which ensures the reliability and trustworthiness of data used in PAM processes was developed. This was achieved by providing a transparent and immutable record of data origin, ownership and lineage.

Practical implications

The proposed model enables decentralized applications (DApps) to publish real-time data obtained from dynamic operations and maintenance processes, enhancing the reliability and effectiveness of data for PAM.

Originality/value

The research presents a data provenance model on a blockchain-based DT, specifically tailored to PAM in building facilities. The proposed model enhances decision-making processes related to PAM by ensuring data reliability and trustworthiness and providing valuable insights for specialists and stakeholders interested in the application of blockchain technology in asset management and data provenance.

Details

Smart and Sustainable Built Environment, vol. 13 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 22 September 2023

Mulatu Tilahun Gelaw, Daniel Kitaw Azene and Eshetie Berhan

This research aims to investigate critical success factors, barriers and initiatives of total productive maintenance (TPM) implementation in selected manufacturing industries in…

Abstract

Purpose

This research aims to investigate critical success factors, barriers and initiatives of total productive maintenance (TPM) implementation in selected manufacturing industries in Addis Ababa, Ethiopia.

Design/methodology/approach

This study built and looked into a conceptual research framework. The potential barriers and success factors to TPM implementation have been highlighted. The primary study techniques used to collect relevant data were a closed-ended questionnaire and semi-structured interview questions. With the use of SPSS version 23 and SmartPLS 3.0 software, the data were examined using descriptive statistics and the inferential Partial Least Square Structural Equation Modeling (PLS-SEM) techniques.

Findings

According to the results of descriptive statistics and multivariate analysis using PLS-SEM, the case manufacturing industries' TPM implementation initiative is in its infancy; break down maintenance is the most widely used maintenance policy; top managers are not dedicated to the implementation of TPM; and there are TPM pillars that have been weakly and strongly addressed by the case manufacturing companies.

Research limitations/implications

The small sample size is a limitation to this study. It is therefore challenging to extrapolate the research findings to other industries. The only manufacturing KPI utilized in this study is overall equipment effectiveness (OEE). It is possible to add more parameters to the manufacturing performance measurement KPI. The relationships between TPM and other lean production methods may differ from those observed in this cross-sectional study. Longitudinal experimental studies and in-depth analyses of TPM implementations may shed further light on this.

Practical implications

Defining crucial success factors and barriers to TPM adoption, as well as identifying the weak and strong TPM pillars, will help companies in allocating their scarce resources exclusively to the most important areas. TPM is not a quick solution. It necessitates a change in both the company's and employees' attitude and their values, which takes time to bring about. Hence, it entails a long-term planning. The commitment of top managers is very important in the initiatives of TPM implementation.

Originality/value

This study is unique in that, it uses a new conceptual research model and the PLS-SEM technique to analyze relationships between TPM pillars and OEE in depth.

Details

Journal of Quality in Maintenance Engineering, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 23 August 2022

Roberta Stefanini, Giovanni Paolo Carlo Tancredi, Giuseppe Vignali and Luigi Monica

In the context of the Industry 4.0, this paper aims to investigate the state of the art of Italian manufacturing, focusing the attention on the implementation of intelligent…

1818

Abstract

Purpose

In the context of the Industry 4.0, this paper aims to investigate the state of the art of Italian manufacturing, focusing the attention on the implementation of intelligent predictive maintenance (IPdM) and 4.0 key enabling technologies (KETs), analyzing advantages and limitations encountered by companies.

Design/methodology/approach

A survey has been developed by the University of Parma in cooperation with the Italian Workers' Compensation Authority (INAIL) and was submitted to a sample of Italian companies. Overall, 70 answers were collected and analyzed.

Findings

Results show that the 54% of companies implemented smart technologies, increasing quality and safety, reducing the operating costs and sometimes improving the process' sustainability. However, IPdM was implemented only by the 37% of respondents: thanks to big data collection and analytics, Internet of Things, machine learning and collaborative robots, they reduced downtime and maintenance costs. These changes were implemented mainly by large companies, located in northern Italy. To spread the use of IPdM in Italian manufacturing, the high initial investment, lack of skilled labor and difficulties in the integration of new digital technologies with the existing infrastructure are the main obstacles to overcome.

Originality/value

The article gives an overview on the current state of the art of 4.0 technologies implementation in Italy: it is useful not only for companies that want to discover the implementations' advantages but also for institutions or research centres that could help them to solve the encountered obstacles.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 21 March 2024

Nanda Kumar Karippur, Pushpa Rani Balaramachandran and Elvin John

This paper aims at identifying the key factors influencing the adoption intention of data analytics for predictive maintenance (PdM) from the lens of the…

Abstract

Purpose

This paper aims at identifying the key factors influencing the adoption intention of data analytics for predictive maintenance (PdM) from the lens of the Technology–Organization–Environment (TOE) framework in the Singapore Process Industries context. The research model aids practitioners and researchers in developing a holistic maintenance strategy for large-scale asset-heavy process industries.

Design/methodology/approach

The TOE framework has been used in this study to consider a wide set of TOE factors and develop a research model with the support of literature. A survey is undertaken and the structural equation modelling (SEM) technique is adopted to test the hypotheses of the proposed model.

Findings

This research highlights the significant roles of digital infrastructure readiness, security and privacy, top management support, organizational competence, partnership with external consultants and government support in influencing adoption intention of data analytics for PdM. Perceived challenges related to organizational restructuring and process automation are not found significant in influencing the adoption intention.

Practical implications

This paper reports valuable insights on adoption intention of data analytics for PdM with relevant implications for the various stakeholders such as the leaders and senior managers of process manufacturing industry companies, government agencies, technology consultants and service providers.

Originality/value

This research uniquely validates the model for the adoption of data analytics for PdM in the process industries using the TOE framework. It reveals the significant technology, organizational and environmental factors influencing the adoption intention and highlights the relevant insights and implications for stakeholders.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 3
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of over 1000