Search results

1 – 10 of 310
Article
Publication date: 1 August 2011

Vinay Kumar Midha, A Mukhopadhyay and Ramanpreet Kaur

Owing to a high amount of stress, seam failure in workwear fabrics makes the fabric unsuitable although the fabric strength is high. It is therefore important to predict

Abstract

Owing to a high amount of stress, seam failure in workwear fabrics makes the fabric unsuitable although the fabric strength is high. It is therefore important to predict the seam strength to ascertain the performance of the garments during use and determine the required thread strength and stitch density to match the required seam strength. In all of the earlier predictive equations, seam strength is predicted from thread strength and stitch density along with some multiplicative factors. During the sewing process, a substantial loss in needle thread strength occurs; therefore, the thread becomes weaker than expected after incorporation into the seam. In this paper, the effects of various machine and process parameters are studied on thread strength loss and seam strength. The seam strength is predicted from the loop strength after considering the loss in thread strength. It is observed that higher seam strengths are observed when stronger threads are used for sewing. Loss in thread strength has a significant influence on the seam strength. Seam strength can be predicted using stitch density and thread loop strength, by considering the loss in thread strength during the sewing process. A closer match between predicted and experimental seam strength is possible.

Details

Research Journal of Textile and Apparel, vol. 15 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 August 2017

Hui Shi, Lingxi Zhang and Jianping Wang

The purpose of this paper is to propose a rational and complete design scheme of seam type of outdoor clothing, so as to improve the seam efficiency and appearance of…

Abstract

Purpose

The purpose of this paper is to propose a rational and complete design scheme of seam type of outdoor clothing, so as to improve the seam efficiency and appearance of outdoor clothing, as well as to provide an optimal seam base for the subsequent pressure adhesive process.

Design/methodology/approach

Four types of common outdoor fabrics and four seam types were selected. Seam strength and thickness were measured. Seam efficiency and seam thickness strain were calculated to evaluate seam quality. Multiple linear regression analysis was adopted to analyze the influence of seam type essential factors on seam strength.

Findings

Among the component factors of seam type, based on two stitches, seam strength was significantly affected by stitch distance, followed by fabric layer on the seam side. The increase of stitch and the interaction among fabrics can effectively improve the seam efficiency. The methods are as follows: the increase of stitches, stitch distance shortening, the increase of fabric layers, etc. The change of seam type had no significant influence on seam thickness strain. A seam-type design scheme of outdoor clothing with good mechanical and appearance properties was designed by choosing the seam types FX1, FX2 and FX4.

Originality/value

This paper designed a practical scheme of seam-type design of outdoor clothing, which has been applied in the industrial production process. It is important for guiding the improvement of seam quality and the production efficiency of outdoor clothing.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 November 2013

Ezzatollah Haghighat, Seyed Mohammad Etrati and Saeed Shaikhzadeh Najar

This paper aims to predict the needle penetration force (NPF) in denim fabrics using the artificial neural network (ANN) and multiple linear regression (MLR) models based…

Abstract

Purpose

This paper aims to predict the needle penetration force (NPF) in denim fabrics using the artificial neural network (ANN) and multiple linear regression (MLR) models based on the effects of various sewing parameters.

Design/methodology/approach

In order to design the ANN and MLR models, four parameters including fabric weight, number of fabric layers, weave pattern, and sewing needle size are taken into account as the input parameters and NPF as the output parameter. According to these parameters, 140 samples of data were resulted. Each sample was tested five times. From these 140 data (input-output data pairs), 112 were used for training the ANN and MLR models and 28 samples were used to test the performance of ANN and MLR. Also, the NPF was measured on the Instron tensile tester to simulate sewing process.

Findings

The results indicated that the NPF in denim fabrics can be well predicted in terms of sewing parameters by using ANN and MLR models, in which the ANN model exhibits greater performance than MLR (RANN=0.989> RMLR=0.901).

Research limitations/implications

The NPF measurement method is limited at low speed.

Originality/value

Using the ANN model for forecasting NPF in denim fabrics can help the garment manufactures to produce high-quality denim products and improve the sewing process through reducing seam damage. The NPF could be also measured in the cycle loading conditions similar to sewing machine process by using a special designed tools mounted on the Instron tensile tester.

Details

International Journal of Clothing Science and Technology, vol. 25 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 December 2017

Mallika Datta, Devarun Nath, Asif Javed and Nabab Hossain

The focus of this research is to identify the optimum commercial grade sewing thread and stitch density to be used with woven linen shirting fabric used in making men’s…

Abstract

Purpose

The focus of this research is to identify the optimum commercial grade sewing thread and stitch density to be used with woven linen shirting fabric used in making men’s formal shirt. Maximum seam efficiency and interaction between the process parameters were assessed.

Design/methodology/approach

The classical method of optimisation involves varying one variable at a time and keeping the others constant. This is often useful, but it does not explain the effect of interaction between the variables under consideration. In this study, the response surface methodology was used for securing a more accurate optimisation of seam quality (seam efficiency) of woven linen shirting fabric. The response surface method is an empirical statistical technique used for multiple regression analysis of quantitative data obtained from statistically designed experiments by solving the multivariate equations simultaneously. Through this system, the input level of each process parameter, i.e. variable and the level of the selected response (seam efficiency), can be quantified. The central composite, Box–Behnken, is the common design used here.

Findings

The maximum seam efficiency is 79.62 per cent and 83.13 per cent in warp and weft direction, respectively, with optimum areal density (G) of 110 g/m2 of woven linen shirting fabric. The most suitable stitch density and ticket number of commercial grade sewing thread for woven linen shirting fabric are 13-13.5 and 40, respectively.

Practical implications

This study could help apparel manufacturers to evaluate seam quality, i.e. seam efficiency of woven linen fabric for men’s shirting, more effectively from the proposed regression model. The optimisation of the commercial grade sewing thread size and stitch density used in this study for woven linen shirting fabric within the range of 110-150 g/m2 will facilitate apparel engineers in production planning and quality control.

Originality/value

There is dearth of research on seam quality for woven linen shirting fabric using commercial grade sewing thread and engineering of prediction regression model for the estimation of seam efficiency by using process parameters, namely, fabric G, thread size and thread density and their interaction.

Details

Research Journal of Textile and Apparel, vol. 21 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 August 2016

Iwona Frydrych and Agnieszka Greszta

Seam efficiency plays an important role for obtaining a desired seam quality. Therefore, this issue is often referred in research papers. The purpose of this paper is to…

Abstract

Purpose

Seam efficiency plays an important role for obtaining a desired seam quality. Therefore, this issue is often referred in research papers. The purpose of this paper is to determine the seam strength and efficiency as well as examining, if and how such factors as: a kind of fabric, kind of thread, kind of seam and the stitch density influence the transverse seam strength and the seam efficiency.

Design/methodology/approach

For research four types of polyester/wool fabrics having different structural parameters and two types of polyester sewing threads were used. Three types of seam were made. The fabric samples were sewn using lockstitch with three different stitch densities. Obtained in this way seams were tested on the tensile machine. The influence of individual factors on the seam strength and its efficiency was assessed statistically using a multivariate variance analysis (ANOVA).

Findings

The findings of this study revealed that the independent variable – stitch density affect significantly of the seam strength as well as its efficiency. Seam strength and seam efficiency values increase with the increase stitch density. Moreover, the variance analysis showed that a kind of fabric also is a statistically significant factor for the seam efficiency and its strength. Furthermore, in the case of seam efficiency it is also important to the stitch direction. However, the study did not show an impact of kind of thread and kind of seam on dependent variables: the seam strength and its efficiency.

Research limitations/implications

Due to the fact that this paper focuses on the seams made only on wool/polyester fabrics with two the most popular weaves, involving only two sewing PES threads, the conclusions presented in this paper are valid only to this assortment and cannot be generalized.

Originality/value

So far, it has not been taken research on the effect of seams with the different number of sewn layers on the seam strength and efficiency. This issue has been taken in this work.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 August 2017

D. Vijay Kirubakar Raj and M. Renuka Devi

The purpose of this paper is to make available to the parachute industry tools to predict behaviour of certain textile materials. In addition to this, it is desired to…

Abstract

Purpose

The purpose of this paper is to make available to the parachute industry tools to predict behaviour of certain textile materials. In addition to this, it is desired to reveal and explain the basic requirement criteria for proper textile material selection. The strength of an assembly as a whole is directly dependent on the strengths of the various joints and seams required to assemble the larger structure. Keeping in mind the complex problem of parachute construction, this research seeks to enlighten the industry about the performance of seams in nylon woven canopy fabrics. Five factors have been studied: different types of weave (plain, rip-stop and twill), density (number of stitches per centimetre), different rows of stitches with lapped seams, different types of stitches (lock stitch, chain stitch and zig-zag) and seam direction (warp, weft and bias direction). Two responses have been analysed, the seam breaking force and the seam efficiency (per cent ratio of seam strength to fabric strength). The test results were subjected to an analysis of variance and the seam strength proved to vary significantly not only with the primary parameters, but with the interactions of the primary parameters as well. That is seam strength (and seam efficiency) changes with each primary parameter but it changes in a different manner when other parameters change. Multiple regressions have been used to construct preliminary predictor equations for seam strength and efficiency, and investigations to provide better equations are in progress.

Design/methodology/approach

ANOVA techniques and statistical regression equations were formed.

Findings

The work has concluded that twill weave 9 with chain stitch has the maximum seam strength, which makes canopies made with 2/1 twill weave and stitched with lapped seam with four rows of chain stitch optimum for heavy supply droppings with a single use parachute(s). It is evident from the results that twill weave with lock stich has the maximum seam efficiency. This makes the canopies stitched with twill fabric, constructed with lapped seams and four rows of stitches ideal for parachutes to be used multiple times. The brake parachutes on aircrafts and parachutes used by sky divers and air combat soldiers can use parachutes whose canopies can be used many times made out of the above mentioned weave and stitch specification.

Originality/value

Original work was conducted from the woven fabrics.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 October 2021

Esra Zeynep Yıldız and Oktay Pamuk

The conversion of fabric into a garment involves many interactions such as the selection of suitable sewing thread, optimization of sewing parameters, ease of conversion…

Abstract

Purpose

The conversion of fabric into a garment involves many interactions such as the selection of suitable sewing thread, optimization of sewing parameters, ease of conversion of fabric into the garment and actual performance of the sewn fabric during wear of the garment. The adjustment of all sewing parameters is necessary to ensure quality. The purpose of this paper is to define the parameters that affect seam quality comprehensively.

Design/methodology/approach

This study primarily focuses on the studies dealing with the effect of various parameters on-seam quality in detail. A systematic literature review was conducted.

Findings

The interactions between parameters may lead to different results than the effect of a single parameter. In addition, changing some parameters may have a positive effect on one element of seam quality while having a negative effect on another. For this reason, it is very important to properly select the parameters according to the specific end use of the garment products and also to consider the interactions.

Originality/value

The knowledge of various factors that affect seam quality will be helpful for manufacturers to improve production performance and to be able to produce high-quality seam.

Details

Research Journal of Textile and Apparel, vol. 25 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 16 November 2012

A. Krasovskyy and D. Bachmann

The present work aims to deal with a very high cycle fatigue (n=109 cycles) of gas metal arc welded joints, subjected to a multiaxial and non‐proportional loading…

Abstract

Purpose

The present work aims to deal with a very high cycle fatigue (n=109 cycles) of gas metal arc welded joints, subjected to a multiaxial and non‐proportional loading. Different design codes and recommendations can greatly reduce the analysis effort in the design of welded structures providing a suitable balance between computational accuracy and ease of use for many industrial applications. However, various assumptions have to be made in a conservative way making this approach less accurate. This paper deals with a refined fatigue assessment, which considers the most important aspects for welded joints and provides an accurate lifetime prediction of welded structures.

Design/methodology/approach

For an accurate prediction of the total lifetime of welded components the information about the material state and the welding induced residual stresses on weld toes is essential. If the surface condition after welding is poor in this area, which is usually the case, the presence of defects can be assumed and the fatigue crack nucleation process can be neglected. The microstructural threshold for initial crack propagation can be therefore used as a lower bound for the fatigue limit prediction.

Findings

Based on the results from the simulation of a welding process and a post‐weld heat treatment in combination with a fracture mechanics approach, this work successfully attempts to reproduce a fatigue behavior, which was observed at the fatigue tests of the multi‐pass single bevel butt weld.

Originality/value

The proposed approach is able to predict accurately the fatigue strength of welded structures and to achieve the full cost and weight optimization potential for industrial applications.

Details

International Journal of Structural Integrity, vol. 3 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 July 2006

Sabria Gribaa, Sami Ben Amar and Abdelwaheb Dogui

The aim of this work is to check the influence of some sewing parameters upon the tensile behaviour of a textile assembly (assembly of two woven samples by a seam).

1018

Abstract

Purpose

The aim of this work is to check the influence of some sewing parameters upon the tensile behaviour of a textile assembly (assembly of two woven samples by a seam).

Design/methodology/approach

This analysis was carried out according to the approach “experimental design”. The studied parameters are the sewing thread, the stitch type, the stitch density, the needle size and the edge of seam. The targeted answers are drawn from the tensile test on the assembly: breaking strength, breaking elongation and deformation energy.

Findings

In order to highlight the behaviour of the seam, a load‐extension curve for the stitch line is established: it represents, for a value of a given tensile effort, the difference between the displacement of the assembly and that of the fabric. From this curve, breaking elongation as well as the deformation energy are determined.

Originality/value

An “experimental design” was carried out and analysed for two types of assembly (warp and weft). Linear models predicting each response were established.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 March 1997

J.P. Domingues, A.M. Manich, R.M. Sauri and A. Barella

Plans a wear simulation of assembled textile structures by sewing, basing the study on the submission of standardized seams carried out on 40 wool fabrics and blends…

387

Abstract

Plans a wear simulation of assembled textile structures by sewing, basing the study on the submission of standardized seams carried out on 40 wool fabrics and blends containing wool to a series of 20 cycles of fatigue, including: washing, drying and submission to a static mechanical load under determined characteristics and steam ironing. Seams in the warp and weft directions were performed on. Examines the following parameters: fabric strength and elongation to break; seam strength and slippage; seam efficiency; seams’ opening limit and both the modulus at 1mm and at break, along the fatigue cycles. Analyses results obtained in function of the seam directions and fatigue cycles.

Details

International Journal of Clothing Science and Technology, vol. 9 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 310