Search results

1 – 10 of over 1000
Article
Publication date: 25 March 2024

Robert Ford and Lindsay Schakenbach Regele

This historical example of the creation of the arms industry in the Connecticut River Valley in the 1800s provides new insights into the value of government venture capital (GVC…

Abstract

Purpose

This historical example of the creation of the arms industry in the Connecticut River Valley in the 1800s provides new insights into the value of government venture capital (GVC) and government demand in creating a new industry. Since current theoretical explanations of the best uses of governmental venture capital are still under development, there is considerable need for further theory development to explain and predict the creation of an industry and especially those industries where failures in private capital supply necessitates governmental involvement in new firm creation. The purpose of this paper is to provide an in depth historical review of how the arms industry evolved spurred by GVC and government created demand.

Design/methodology/approach

This study uses abductive inference as the best way to build and test emerging theories and advancing theoretical explanations of the best uses of GVC and governmental demand to achieve socially required outcomes.

Findings

By observing this specific historical example in detail, the authors add to the understanding of value creation caused by governmental venture capital funding of existing theory. A major contribution of this paper is to advance theory based on detailed observation.

Originality/value

The relatively limited research literature and theory development on governmental venture capital funding and the critical success factors in startups are enriched by this abductive investigation of the creation of the historically important arms industry and its spillover into creating the specialized machine industry.

Details

Journal of Management History, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1751-1348

Keywords

Article
Publication date: 3 November 2023

Yinan Chen, Dehong Huo, Guorong Wang, Lin Zhong and Zheng Gong

This paper aims to combine the grooves with an annular air thrust bearing with multi-hole restrictors and discusses the influence of the groove parameters on the bearing…

Abstract

Purpose

This paper aims to combine the grooves with an annular air thrust bearing with multi-hole restrictors and discusses the influence of the groove parameters on the bearing performance.

Design/methodology/approach

Four models of aerostatic bearings with grooves of different geometries are established. The pressure distribution, load-carrying capacity (LCC), stiffness and flow characteristics of the flow field in the bearing clearances are obtained by computational fluid dynamics simulation.

Findings

The numerical and simulation results show that air bearing with grooved restrictors can slow down the pressure drop at the air inlet and increase the LCC and stiffness of the bearing. The gas flow in the aerostatic bearing is also studied, and the air vortex in the recess is analyzed.

Originality/value

This research optimizes the structure of the annular air thrust bearing, analyzes the gas vortex in the recess, improves the LCC and stiffness of the bearing and provides a reference for the bearing in the selection of groove parameters.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-01-2023-0006/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 January 2024

Alexandra S. Kang and Shivaranjhani Arikrishnan

This study aims to espouse the concept of sustainable environment, social and governance (ESG) practices as the proxies of sustainability reporting (SR). In the presence of smart…

Abstract

Purpose

This study aims to espouse the concept of sustainable environment, social and governance (ESG) practices as the proxies of sustainability reporting (SR). In the presence of smart technology adoption (STA), ESG drives total quality management (TQM) of sustainability matters in advanced medical device (AMD) companies post-pandemic.

Design/methodology/approach

This study uses two stages of rigorous data collection. Two focus groups comprising board members, investment advisers and senior managers of AMD were formed to establish the external validity of the constructs proposition. It then used a Web survey to solicit 240 respondents from AMD. Data were analysed using the partial least squares structural equation modelling (PLS-SEM) to provide robustness of predictive power in the model estimation.

Findings

Results show SR has positively impacted TQM. It reveals positive relationships between SR and ESG and ESG and TQM. Findings indicate that STA moderates the relationships between ESG and TQM with large effect sizes.

Research limitations/implications

This study offers direction to expedite strategies and action plans by sustainability practitioners in an asymptotic quest for ESG and TQM best practices. Future research should focus on the protection of sustainable social using qualitative methodology.

Originality/value

Using the lens of corporate sustainability, this study develops a framework that integrates ESG, TQM and STA to examine the synergistic effects post pandemic. It provides evidence that ESG practices and STA adoption drive TQM in transition to attain sustainability among the AMD at the country level.

Details

Journal of Asia Business Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1558-7894

Keywords

Book part
Publication date: 25 October 2023

Md Aminul Islam and Md Abu Sufian

This research navigates the confluence of data analytics, machine learning, and artificial intelligence to revolutionize the management of urban services in smart cities. The…

Abstract

This research navigates the confluence of data analytics, machine learning, and artificial intelligence to revolutionize the management of urban services in smart cities. The study thoroughly investigated with advanced tools to scrutinize key performance indicators integral to the functioning of smart cities, thereby enhancing leadership and decision-making strategies. Our work involves the implementation of various machine learning models such as Logistic Regression, Support Vector Machine, Decision Tree, Naive Bayes, and Artificial Neural Networks (ANN), to the data. Notably, the Support Vector Machine and Bernoulli Naive Bayes models exhibit robust performance with an accuracy rate of 70% precision score. In particular, the study underscores the employment of an ANN model on our existing dataset, optimized using the Adam optimizer. Although the model yields an overall accuracy of 61% and a precision score of 58%, implying correct predictions for the positive class 58% of the time, a comprehensive performance assessment using the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) metrics was necessary. This evaluation results in a score of 0.475 at a threshold of 0.5, indicating that there's room for model enhancement. These models and their performance metrics serve as a key cog in our data analytics pipeline, providing decision-makers and city leaders with actionable insights that can steer urban service management decisions. Through real-time data availability and intuitive visualization dashboards, these leaders can promptly comprehend the current state of their services, pinpoint areas requiring improvement, and make informed decisions to bolster these services. This research illuminates the potential for data analytics, machine learning, and AI to significantly upgrade urban service management in smart cities, fostering sustainable and livable communities. Moreover, our findings contribute valuable knowledge to other cities aiming to adopt similar strategies, thus aiding the continued development of smart cities globally.

Details

Technology and Talent Strategies for Sustainable Smart Cities
Type: Book
ISBN: 978-1-83753-023-6

Keywords

Article
Publication date: 9 May 2023

Weifeng Liu, Xiaodong Yang, Xianli Liu, Jian Zhang, Feilin Liu, Shengguo Yang and Lin Zeng

The purpose of this paper is to analyze the variation of temperature field, pressure field and deformation of hydrostatic thrust bearing under different working conditions, so as…

Abstract

Purpose

The purpose of this paper is to analyze the variation of temperature field, pressure field and deformation of hydrostatic thrust bearing under different working conditions, so as to provide a theoretical basis for improving accuracy and reliability.

Design/methodology/approach

In this study, the double rectangular hydrostatic bearing of type Q1-224 was selected as the research object, and the simulation was carried out according to different working conditions, and the obtained data were summarized regularly.

Findings

It is found that the overall temperature of hydrostatic bearing increases with the increase of speed and load, and the increase in load will result in a larger pressure distribution which first increases and then decreases with the speed. The deformation trend of the deformation field is found, and it is found that the force deformation is larger than the thermal deformation at low rotational speed, and the thermal deformation is larger than the force deformation at high rotational speed.

Originality/value

In this study, the fluid-structure coupling method of conjugate heat transfer is applied to study the whole hydrostatic bearing. Most of the previous studies only studied the oil film and considered the influence of the convective heat transfer between the hydrostatic bearing and the air in heat transfer, which is rarely seen in the previous research literature.

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 2 November 2022

Joerg Leukel, Julian González and Martin Riekert

Machine learning (ML) models are increasingly being used in industrial maintenance to predict system failures. However, less is known about how the time windows for reading data…

Abstract

Purpose

Machine learning (ML) models are increasingly being used in industrial maintenance to predict system failures. However, less is known about how the time windows for reading data and making predictions affect performance. Therefore, the purpose of this research is to assess the impact of different sliding windows on prediction performance.

Design/methodology/approach

The authors conducted a factorial experiment using high dimensional machine data covering two years of operation, taken from a real industrial case for the production of high-precision milled and turned parts. The impacts of different reading and prediction windows were tested for three ML algorithms (random forest, support vector machines and logistic regression) and four metrics (accuracy, precision, recall and F-score).

Findings

The results reveal (1) the critical role of the prediction window contingent upon the application domain, (2) a non-monotonic relationship between the reading window and performance, and (3) how sliding window selection can systematically be used to improve different facets of performance.

Originality/value

The study's findings advance the knowledge of ML-based failure prediction, by highlighting how systematic variation of two important but yet understudied factors contributes to the development of more useful prediction models.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 7 November 2023

Robert Bogue

The purpose of this paper is to provide details of recent developments in agricultural robots with an emphasis of those that address labour shortages and environmental issues.

Abstract

Purpose

The purpose of this paper is to provide details of recent developments in agricultural robots with an emphasis of those that address labour shortages and environmental issues.

Design/methodology/approach

Following an introduction which highlights some of the challenges facing the agricultural industry, this discusses recent robotic agricultural vehicle developments and the enabling technologies. It then provides examples of terrestrial and airborne robots employed in precision agricultural practices. Finally, brief conclusions are drawn.

Findings

Traditional, labour-intensive and environmentally harmful agricultural practices are not sustainable in the long term, and if food supply is to meet future demand, radical changes will be required. Exploiting recent advances in artificial intelligence (AI), agricultural equipment manufacturers are developing robotic vehicles in response to labour shortages. Precision agricultural practices will mitigate many of the detrimental environmental impacts and can also reduce the reliance on manpower. Weeding robots which reduce or eliminate the use of herbicides have been commercialised by a growing number of companies and again exploit AI techniques. Drones equipped with imaging device are playing an increasingly important role by characterising agricultural and crop conditions, thereby allowing highly targeted agrochemical application.

Originality/value

This illustrates how the agricultural industry is adopting robotic technology in response to the need to increased productivity while mitigating the problems of shortages of labour and environmental degradation.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 December 2023

Na Xu, Yanxiang Liang, Chaoran Guo, Bo Meng, Xueqing Zhou, Yuting Hu and Bo Zhang

Safety management plays an important part in coal mine construction. Due to complex data, the implementation of the construction safety knowledge scattered in standards poses a…

Abstract

Purpose

Safety management plays an important part in coal mine construction. Due to complex data, the implementation of the construction safety knowledge scattered in standards poses a challenge. This paper aims to develop a knowledge extraction model to automatically and efficiently extract domain knowledge from unstructured texts.

Design/methodology/approach

Bidirectional encoder representations from transformers (BERT)-bidirectional long short-term memory (BiLSTM)-conditional random field (CRF) method based on a pre-training language model was applied to carry out knowledge entity recognition in the field of coal mine construction safety in this paper. Firstly, 80 safety standards for coal mine construction were collected, sorted out and marked as a descriptive corpus. Then, the BERT pre-training language model was used to obtain dynamic word vectors. Finally, the BiLSTM-CRF model concluded the entity’s optimal tag sequence.

Findings

Accordingly, 11,933 entities and 2,051 relationships in the standard specifications texts of this paper were identified and a language model suitable for coal mine construction safety management was proposed. The experiments showed that F1 values were all above 60% in nine types of entities such as security management. F1 value of this model was more than 60% for entity extraction. The model identified and extracted entities more accurately than conventional methods.

Originality/value

This work completed the domain knowledge query and built a Q&A platform via entities and relationships identified by the standard specifications suitable for coal mines. This paper proposed a systematic framework for texts in coal mine construction safety to improve efficiency and accuracy of domain-specific entity extraction. In addition, the pretraining language model was also introduced into the coal mine construction safety to realize dynamic entity recognition, which provides technical support and theoretical reference for the optimization of safety management platforms.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 1000