Search results

1 – 10 of 494
Article
Publication date: 29 October 2020

Ting Luo, Xiaolong Xue, Yongtao Tan, Yuna Wang and Yuanxin Zhang

This paper aimed to introduce a systematic body of knowledge via a scientometric review, guiding the sustainable transition from conventional construction to prefabricated…

1561

Abstract

Purpose

This paper aimed to introduce a systematic body of knowledge via a scientometric review, guiding the sustainable transition from conventional construction to prefabricated construction. The construction industry currently faces a challenge to balance sustainable development and the construction of new buildings. In this context, one of the most recent debates is prefabricated construction. As an emerging construction approach, although existing knowledge makes contributions to the implementation of prefabricated construction, there is a lack of a comprehensive and in-depth overview of the critical knowledge themes and gaps.

Design/methodology/approach

This study uses the scientometric analysis to review the state-of-the-art knowledge of prefabricated construction. It retrieved data from the Web of Science core collection database. CiteSpace software was used to conduct the analysis and visualization; three analysis methods identify the knowledge hotspots, knowledge domains and knowledge topics. Finally, according to integrating the hidden connections among results, a body of knowledge for prefabricated construction application can be inferred.

Findings

The results show that 120 knowledge hotspots, five critical knowledge domains and five prominent knowledge topics are vital for promoting implementation of prefabricated construction. Based on the afore analysis, a body of knowledge for prefabricated construction that can systematically cover a broad knowledge of prefabricated construction-related research and activities are integrated and proposed in this paper.

Originality/value

Body of knowledge systematically covers a broad knowledge of prefabricated construction applications and is vital to guide researchers and practitioners to conduct related research and activities, thereby promoting the sustainable transition to prefabricated construction implementation.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 December 2001

Nashwan Dawood and Ramesh Marasini

The concrete building products manufacturing industry supplies 2,000‐4,000 precast concrete building products to the construction industry. Owing to seasonal demand, the industry…

2231

Abstract

The concrete building products manufacturing industry supplies 2,000‐4,000 precast concrete building products to the construction industry. Owing to seasonal demand, the industry builds up stock in winter to meet the high demand in summer. As concrete products are heavy and vary in shape and size, proper stocking in terms of layout and methods of stocking of products on the yard is essential. Industrial practice suggests that stockyard space management gets less attention during strategic and budget planning as it is left to the stockyard manager. The industry experiences space congestion for both the storage and dispatch of products. During dispatch process, greater retrieval time is required, long queues of lorries (shipping vehicles) are formed and desired level of service cannot be maintained. Presents a review of stockyard operations, analysis of parameters affecting loading and dispatch process on the yard and strategies to optimise the stockyard layout. It is expected that proper layout planning will reduce the cost of delivery of products by 5‐10 per cent in the industry where profit is less than 5‐8 per cent.

Details

Logistics Information Management, vol. 14 no. 5/6
Type: Research Article
ISSN: 0957-6053

Keywords

Article
Publication date: 28 April 2022

Zul-Atfi Ismail

The purpose of this paper is to show that the growing global trend of quality assurance indicates the potential of precast concrete (PC) to improve construction quality and…

Abstract

Purpose

The purpose of this paper is to show that the growing global trend of quality assurance indicates the potential of precast concrete (PC) to improve construction quality and productivity, reduce wasteful construction, and achieve design standardization and to accelerate construction time. However, its current approach for dynamic characteristics, such as stiffness and displacement on beam-column connection system design, is not effective in achieving the required quality and operational requirements.

Design/methodology/approach

A design tool based on the literature and data analysis in product planning and safety is proposed for the practice of PC building construction.

Findings

The results reveal the need for improvement of PC building performance in the construction industry, especially for the beam-column connection system. The issues include improper design, improper specification and defective concrete and steel components compared to other manufacturing methods.

Originality/value

A novel and sophisticated technique based on physical internet-enabled building information modeling (PI-BIM) is proposed to improve the planning process and safety for PC buildings in Malaysia.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 27 March 2023

Yiran Dan and Guiwen Liu

Production and transportation of precast components, as two continuous service stages of a precast plant, play an important role in meeting customer needs and controlling costs…

Abstract

Purpose

Production and transportation of precast components, as two continuous service stages of a precast plant, play an important role in meeting customer needs and controlling costs. However, there is still a lack of production and transportation scheduling methods that comprehensively consider delivery timeliness and transportation economy. This article aims to study the integrated scheduling optimization problem of in-plant flowshop production and off-plant transportation under the consideration of practical constraints of customer order delivery time window, and seek an optimal scheduling method that balances delivery timeliness and transportation economy.

Design/methodology/approach

In this study, an integrated scheduling optimization model of flowshop production and transportation for precast components with delivery time windows is established, which describes the relationship between production and transportation and handles transportation constraints under the premise of balancing delivery timeliness and transportation economy. Then a genetic algorithm is designed to solve this model. It realizes the integrated scheduling of production and transportation through double-layer chromosome coding. A program is designed to realize the solution process. Finally, the validity of the model is proved by the calculation of actual enterprise data.

Findings

The optimized scheduling scheme can not only meet the on-time delivery, but also improve the truck loading rate and reduce the total cost, composed of early cost in plant, delivery penalty cost and transportation cost. In the model validation, the optimal scheduling scheme uses one less truck than the traditional EDD scheme (saving 20% of the transportation cost), and the total cost can be saved by 17.22%.

Originality/value

This study clarifies the relationship between the production and transportation of precast components and establishes the integrated scheduling optimization model and its solution algorithm. Different from previous studies, the proposed optimization model can balance the timeliness and economy of production and transportation for precast components.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 June 2006

Ramesh Marasini and Nashwan Dawood

The monitoring and control of business processes and their variables have strategic importance in order to respond to the dynamics of the world of business. Many monitoring…

585

Abstract

The monitoring and control of business processes and their variables have strategic importance in order to respond to the dynamics of the world of business. Many monitoring processes are focussed on controlling time and cost and the overall performance is evaluated through a standard set of key performance indicators. These passive approaches do not consider a holistic/system view and therefore ignore the interrelationships between various external and internal variables impacting a business process. This paper investigates an application of multivariate statistical process control techniques [mainly principal component analysis (PCA) and partial least squares (PLS)] which have been successfully used in process and chemical industries, to model, monitor, control and predict business process variables. A prototype, innovative managerial control system (IMCS), was developed to investigate the application of PCA and PLS techniques to monitor, control and predict business process performance. Data was collected and analysed using a case study in a precast concrete building products company. This study has proved that the PCA approach can be effectively used to control business processes. Also, the PLS approach is found to provide better forecasts as compared to commonly used decomposition method. The benefits and limitations of using multivariate statistical process control techniques as applied to business process control are highlighted.

Details

Construction Innovation, vol. 6 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 31 October 2023

Yangze Liang and Zhao Xu

Monitoring of the quality of precast concrete (PC) components is crucial for the success of prefabricated construction projects. Currently, quality monitoring of PC components…

Abstract

Purpose

Monitoring of the quality of precast concrete (PC) components is crucial for the success of prefabricated construction projects. Currently, quality monitoring of PC components during the construction phase is predominantly done manually, resulting in low efficiency and hindering the progress of intelligent construction. This paper presents an intelligent inspection method for assessing the appearance quality of PC components, utilizing an enhanced you look only once (YOLO) model and multi-source data. The aim of this research is to achieve automated management of the appearance quality of precast components in the prefabricated construction process through digital means.

Design/methodology/approach

The paper begins by establishing an improved YOLO model and an image dataset for evaluating appearance quality. Through object detection in the images, a preliminary and efficient assessment of the precast components' appearance quality is achieved. Moreover, the detection results are mapped onto the point cloud for high-precision quality inspection. In the case of precast components with quality defects, precise quality inspection is conducted by combining the three-dimensional model data obtained from forward design conversion with the captured point cloud data through registration. Additionally, the paper proposes a framework for an automated inspection platform dedicated to assessing appearance quality in prefabricated buildings, encompassing the platform's hardware network.

Findings

The improved YOLO model achieved a best mean average precision of 85.02% on the VOC2007 dataset, surpassing the performance of most similar models. After targeted training, the model exhibits excellent recognition capabilities for the four common appearance quality defects. When mapped onto the point cloud, the accuracy of quality inspection based on point cloud data and forward design is within 0.1 mm. The appearance quality inspection platform enables feedback and optimization of quality issues.

Originality/value

The proposed method in this study enables high-precision, visualized and automated detection of the appearance quality of PC components. It effectively meets the demand for quality inspection of precast components on construction sites of prefabricated buildings, providing technological support for the development of intelligent construction. The design of the appearance quality inspection platform's logic and framework facilitates the integration of the method, laying the foundation for efficient quality management in the future.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 November 2017

Ali Mohamed Ali Aboshia, Riza Atiq Rahmat, Muhammad Fauzi Mohd Zain and Amiruddin Ismail

The purpose of this paper is to develop an alternative new ternary geopolymer mortar (MKSP) to resolve a traditional mortar problem which exhibits several disadvantages, including…

Abstract

Purpose

The purpose of this paper is to develop an alternative new ternary geopolymer mortar (MKSP) to resolve a traditional mortar problem which exhibits several disadvantages, including poor strengths and surface microcracks and the CO2 air pollution.

Design/methodology/approach

The MKSP ternary binder was produced using metakaolin (MK), slag (S), and palm oil fuel ash (POFA) activated with an alkaline mixture of sodium silicate (Na2SiO3) and 10 M NaOH in a mass ratio of 2.5. Seven different mix proportions of MK, slag, and POFA were used to fabricate MKSP mortars. The water-to-binder ratio was varied between 0.4 and 0.5. The mortars were heat cured for 2 h at 80°C and then aged in air. Flexural stress and strain, mortars flow and compressive strength were tested. Furthermore, the mortars were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analyses.

Findings

The results showed that the sample MKSP6, which contained 40 percent MK, 40 percent slag, and 20 percent POFA, exhibited high compressive strength (52 MPa) without any cracks and flexural strength (6.9 MPa) at 28 days after being cured for 2 h at 80°C; however, the MKSP7 mortar with optimal strength of 55 MPa showed some surface cracks . Further, the results of the XRD, SEM, and FTIR analyses indicated that the MKSP mortars primarily consisted of a crystalline (Si+Al) phase (70 percent) and a smaller amorphous (Si+Ca) phase (30 percent).

Research limitations/implications

The MKSP ternary geopolymer mix has three limitations as an importance of heat curing for development early strength, POFA content less than 20 percent to gain high normal strength and delaying the sitting time by controlling the slag content or the alkali activator type.

Practical implications

The use of geopolymer materials binder in a real building is limited and it still under research, Thus, the first model of real applied geopolymer cement in 2008 was the E-Crete model that formed by Zeobond company Australia to take the technology of geopolymer concrete to reality. Zeobond Pty Ltd was founded by Professor Jannie S.J. van (van Deventer et al., 2013), it was used to product precast concrete for the building structure. The second model was PYRAMENT model in 2002 by American cement manufacturer Lone Star Industries which was produced from the development carried out on inorganic alumino-silicate polymers called geopolymer (Palomo et al., 1999). In 2013 the third model was Queensland’s University GCI building with three suspended floors made from structural geopolymer concrete containing slag/fly ash-based geopolymer (Pathak, 2016). In Australia, 2014, the newly completed Brisbane West Wellcamp airport becomes the greenest airport in the world. Cement-free geopolymer concrete was used to save more than 6,600 tons of carbon emissions in the construction of the airport. Therefore, the next century will see cement companies developing alternative binders that are more environmentally friendly from a sustainable development point of view.

Originality/value

Production of new geopolymer binder of mortar as alternative to traditional cement binder with high early and normal strength from low cost waste materials, less potential of cracking, less energy consumption need and low carbon dioxide emission.

Details

International Journal of Building Pathology and Adaptation, vol. 35 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 1 January 2013

Mohamed Osmani

At present Glass Reinforced Plastic (GRP) waste recycling is very limited due to its intrinsic thermoset composite nature and non‐availability of viable recovery options. The…

Abstract

Purpose

At present Glass Reinforced Plastic (GRP) waste recycling is very limited due to its intrinsic thermoset composite nature and non‐availability of viable recovery options. The purpose of this paper is to assess the recycling potential of GRP waste powder and fibre in concrete, cement and rubber composites.

Design/methodology/approach

Extensive laboratory experiments were conducted to examine the suitability of GRP waste in concrete, cement, and rubber composites. GRP waste samples were processed and suitable tests were performed to measure the mechanical properties of the resulting three composites.

Findings

The findings of this experimental investigation confirmed that GRP waste can be used as a partial replacement for virgin and raw materials in composites. Furthermore, the addition of GRP waste powder and fibre to composites has the potential to improve their mechanical properties.

Research limitations/implications

Results show that the use of GRP waste powder in concrete and rubber composites and GRP waste fibre in architectural cladding panels has technical, economic and environmental benefits. As such, the findings of this research pave the way for viable technological options for substituting quality raw materials by GRP waste in pan‐industry composites and improving their mechanical properties. However, resulting recycled composites depend upon the consistency and quality of GRP waste powder and fibre, and the access to specialised composite material manufacturing facilities. Furthermore, full compliance tests including durability studies and requirements, which may depend upon specific applications, are recommended.

Practical implications

The adopted methodological approach of this research and subsequent experimental results pave the way for viable technological options for substituting quality raw materials by GRP waste in pan‐industry composites. It is anticipated that the results of this research would help diverting GRP waste from landfill to more useful industrial applications.

Originality/value

Growing technological innovations, ample market value and demand for GRP composites all over the world has trigged interest in optimising GRP waste recovery. However, few solutions for GRP waste recycling into value‐added industrial products are being explored. The work reported so far is very limited and did not show viable applications for GRP waste composites. Hence, this research sets out to examine the suitability of GRP waste powder and fibre in concrete, cement, and rubber composites.

Details

Management of Environmental Quality: An International Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 28 October 2020

Gulden Gumusburun Ayalp and Ilhami Ay

Prefabricated construction technology enables relatively faster and easier construction of building structures at a lower project cost, providing improved quality control with…

Abstract

Purpose

Prefabricated construction technology enables relatively faster and easier construction of building structures at a lower project cost, providing improved quality control with minimal material waste. Despite the advantages of prefabricated construction systems, they are not extensively used in Turkey because of specific yet largely undefined challenges. Therefore, the purpose of this study aims to determine the factors currently affecting the extensive use of prefabricated construction systems in Turkey.

Design/methodology/approach

The reasons for such systems not being used extensively in Turkey were examined using responses to a questionnaire distributed amongst architects working at design firms, prefabricated-building manufacturers and contractors. The obtained survey data were statistically analysed using the SPSS 22 and LISREL 8.7 software to rank the severity of the identified challenges and determine the most critical factors.

Findings

Eight critical factors groups affecting the use of prefabricated construction systems and their associated factors were identified according the responses provided by the participants. Potential solutions and recommendations were proposed based on these factor groups that are expected facilitate the implementation of prefabricated construction systems in Turkey.

Originality/value

Little previous research has provided insight into the specific factors limiting the use of prefabricated construction systems. This study accordingly approaches the subject considering all phases of prefabricated construction systems and presents a structural model of the factors obtained by a confirmatory factor analysis for application to expand the use of prefabricated construction systems.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 December 2022

Lovelin Obi, Mohammed Arif, Emmanuel I. Daniel, Olugbenga Timo Oladinrin and Jack Steven Goulding

Circular economy (CE) and offsite construction (OSC) are two innovations for improving the construction industry's overall performance against a myriad of sustainability-driven…

Abstract

Purpose

Circular economy (CE) and offsite construction (OSC) are two innovations for improving the construction industry's overall performance against a myriad of sustainability-driven agenda/initiatives. There is a real opportunity to conjoin OSC and CE to provide new insight and opportunities to deliver more evidence-based sustainable systems. This study analyses extant literature in CE and OSC (between 2000 and 2021) through a bibliometric review to tease out critical measures for their integration and transformation.

Design/methodology/approach

This study adopts a science mapping quantitative literature review approach employing bibliometric and visualisation techniques to systematically investigate data. The Web of Science (WoS) database was used to collect data, and the VOSviewer software to analyse the data collected to determine strengths, weights, clusters and research trends in OSC and CE.

Findings

Important findings emerging from the study include extensive focus on sustainability, waste, life cycle assessment and building information modelling (BIM), which currently serve as strong interlinks to integrate OSC and CE. Circular business models, deconstruction and supply chain management are emerging areas, with strong links for integrating CE and OSC. These emerging areas influence organisational and operational decisions towards sustainable value creation, hence requiring more future empirical investigations.

Originality/value

This study is a novel research using bibliometric analysis to unpick underpinning conduits for integrating CE and OSC, providing a blueprint for circular OSC future research and practice. It provides the needed awareness to develop viable strategies for integrating CE in OSC, creating opportunities to transition to more sustainable systems in the construction sector.

Details

Built Environment Project and Asset Management, vol. 13 no. 1
Type: Research Article
ISSN: 2044-124X

Keywords

1 – 10 of 494